MSNoise API
- msnoise.api.get_logger(name, loglevel=None, with_pid=False)
Returns the current configured logger or configure a new one.
- msnoise.api.get_engine(inifile=None)
Returns the a SQLAlchemy Engine
- msnoise.api.connect(inifile=None)
Establishes a connection to the database and returns a Session object.
- Parameters:
inifile (string) – The path to the db.ini file to use. Defaults to os.cwd() + db.ini
- Return type:
- Returns:
A
Session
object, needed for many of the other API methods.
- msnoise.api.create_database_inifile(tech, hostname, database, username, password, prefix='')
Creates the db.ini file based on supplied parameters.
- Parameters:
tech (int) – The database technology used: 1=sqlite 2=mysql
hostname (string) – The hostname of the server (if tech=2) or the name of the sqlite file if tech=1)
database (string) – The database name
username (string) – The user name
prefix (string) – The prefix to use for all tables
password (string) – The password of user
- Returns:
None
- msnoise.api.read_db_inifile(inifile=None)
Reads the parameters from the db.ini file.
- Parameters:
inifile (string) – The path to the db.ini file to use. Defaults to os.cwd() + db.ini
- Return type:
tuple
- Returns:
tech, hostname, database, username, password
- msnoise.api.get_config(session, name=None, isbool=False, plugin=None)
Get the value of one or all config bits from the database.
- Parameters:
session (
sqlalchemy.orm.session.Session
) – ASession
object, as obtained byconnect()
name (str) – The name of the config bit to get. If omitted, a dictionnary with all config items will be returned
isbool (bool) – if True, returns True/False for config name. Defaults to False
plugin (str) – if provided, gives the name of the Plugin config to use. E.g. if “Amazing” is provided, MSNoise will try to load the “AmazingConfig” entry point. See Extending MSNoise with Plugins for details.
- Return type:
- Returns:
the value for name or a dict of all config values
- msnoise.api.update_config(session, name, value, plugin=None)
Update one config bit in the database.
- Parameters:
session (
sqlalchemy.orm.session.Session
) – ASession
object, as obtained byconnect()
name (str) – The name of the config bit to set.
value (str) – The value of parameter name. Can also be NULL if you don’t want to use this particular parameter.
plugin (str) – if provided, gives the name of the Plugin config to use. E.g. if “Amazing” is provided, MSNoise will try to load the “AmazingConfig” entry point. See Extending MSNoise with Plugins for details.
- msnoise.api.get_params(session)
Get config parameters from the database.
- Parameters:
session (
sqlalchemy.orm.session.Session
) – ASession
object, as obtained byconnect()
- Returns:
a Param class containing the parameters
- msnoise.api.get_filters(session, all=False, ref=None)
Get Filters from the database.
- Parameters:
session (
sqlalchemy.orm.session.Session
) – ASession
object, as obtained byconnect()
all (bool) – Returns all filters from the database if True, or only filters where used = 1 if False (default)
- Return type:
list of
Filter
- Returns:
a list of Filter
- msnoise.api.update_filter(session, ref, low, mwcs_low, high, mwcs_high, mwcs_wlen, mwcs_step, used)
Updates or Insert a new Filter in the database.
See also
msnoise.msnoise_table_def.declare_tables.Filter
- Parameters:
session (
sqlalchemy.orm.session.Session
) – ASession
object, as obtained byconnect()
ref (int) – The id of the Filter in the database
low (float) – The lower frequency bound of the Whiten function (in Hz)
high (float) – The upper frequency bound of the Whiten function (in Hz)
mwcs_wlen (float) – Window length (in seconds) to perform MWCS
mwcs_step (float) – Step (in seconds) of the windowing procedure in MWCS
used (bool) – Is the filter activated for the processing
- msnoise.api.get_networks(session, all=False)
Get Networks from the database.
- Parameters:
session (
sqlalchemy.orm.session.Session
) – ASession
object, as obtained byconnect()
all (bool) – Returns all networks from the database if True, or only networks at least one station has used = 1 if False (default)
- Return type:
list of str
- Returns:
a list of network codes
- msnoise.api.get_stations(session, all=False, net=None, format='raw')
Get Stations from the database.
- Parameters:
session (
sqlalchemy.orm.session.Session
) – ASession
object, as obtained byconnect()
all (bool) – Returns all stations from the database if True, or only stations where used = 1 if False (default)
net (str) – if set, limits the stations returned to this network
- Return type:
list of
msnoise.msnoise_table_def.declare_tables.Station
- Returns:
list of
Station
- msnoise.api.get_station(session, net, sta)
Get one Station from the database.
- Parameters:
session (
sqlalchemy.orm.session.Session
) – ASession
object, as obtained byconnect()
net (str) – the network code
sta (str) – the station code
- Return type:
msnoise.msnoise_table_def.declare_tables.Station
- Returns:
a
Station
Object
- msnoise.api.update_station(session, net, sta, X, Y, altitude, coordinates='UTM', instrument='N/A', used=1)
Updates or Insert a new Station in the database.
See also
msnoise.msnoise_table_def.declare_tables.Station
- Parameters:
session (
sqlalchemy.orm.session.Session
) – ASession
object, as obtained byconnect()
net (str) – The network code of the Station
sta (str) – The station code
X (float) – The X coordinate of the station
Y (float) – The Y coordinate of the station
altitude (float) – The altitude of the station
coordinates (str) – The coordinates system. “DEG” is WGS84 latitude/ longitude in degrees. “UTM” is expressed in meters.
instrument (str) – The instrument code, useful with PAZ correction
used (bool) – Whether this station must be used in the computations.
- msnoise.api.get_station_pairs(session, used=None, net=None)
Returns an iterator over all possible station pairs. If auto-correlation is configured in the database, returns N*N pairs, otherwise returns N*(N-1)/2 pairs.
- Parameters:
- Return type:
iterable
- Returns:
An iterable of
Station
object pairs
- msnoise.api.check_stations_uniqueness(session, station)
- Parameters:
session –
station –
- Returns:
- msnoise.api.get_interstation_distance(station1, station2, coordinates='DEG')
Returns the distance in km between station1 and station2.
Warning
Currently the stations coordinates system have to be the same!
- msnoise.api.update_data_availability(session, net, sta, loc, chan, path, file, starttime, endtime, data_duration, gaps_duration, samplerate)
Updates a DataAvailability object in the database
- Parameters:
session (
sqlalchemy.orm.session.Session
) – ASession
object, as obtained byconnect()
net (str) – The network code of the Station
sta (str) – The station code
chan (str) – The component (channel)
path (str) – The full path to the folder containing the file
file (str) – The name of the file
starttime (datetime.datetime) – Start time of the file
endtime (datetime.datetime) – End time of the file
data_duration (float) – Cumulative duration of available data in the file
gaps_duration (float) – Cumulative duration of gaps in the file
samplerate (float) – Sample rate of the data in the file (in Hz)
- msnoise.api.get_new_files(session)
Returns the files marked “N”ew or “M”odified in the database
- Parameters:
session (
sqlalchemy.orm.session.Session
) – ASession
object, as obtained byconnect()
- Return type:
list
- Returns:
list of
DataAvailability
- msnoise.api.get_data_availability(session, net=None, sta=None, loc=None, chan=None, starttime=None, endtime=None)
Returns the
DataAvailability
objects for specific net, sta, starttime or endtime- Parameters:
session (
sqlalchemy.orm.session.Session
) – ASession
object, as obtained byconnect()
net (str) – Network code
sta (str) – Station code
starttime (datetime.datetime, datetime.date) – Start time of the search
endtime (datetime.datetime, datetime.date) – End time of the search
- Return type:
list
- Returns:
list of
DataAvailability
- msnoise.api.mark_data_availability(session, net, sta, flag)
Updates the flag of all
DataAvailability
objects matching net.sta in the database
- msnoise.api.count_data_availability_flags(session)
Count the number of
DataAvailability
, grouped by flag- Parameters:
session (
sqlalchemy.orm.session.Session
) – ASession
object, as obtained byconnect()
- Return type:
list
- Returns:
list of [count, flag] pairs
- msnoise.api.update_job(session, day, pair, jobtype, flag, commit=True, returnjob=True, ref=None)
Updates or Inserts a new
Job
in the database.- Parameters:
day (str) – The day in YYYY-MM-DD format
pair (str) – the name of the pair (EXAMPLE?)
jobtype (str) – CrossCorrelation (CC) or dt/t (DTT) Job?
flag (str) – Status of the Job: “T”odo, “I”n Progress, “D”one.
commit (bool) – Whether to directly commit (True, default) or not (False)
returnjob (bool) – Return the modified/inserted Job (True, default) or not (False)
- Return type:
Job
or None- Returns:
If returnjob is True, returns the modified/inserted Job.
- msnoise.api.massive_insert_job(jobs)
Routine to use a low level function to insert much faster a list of
Job
. This method uses the Engine directly, no need to pass a Session object.- Parameters:
jobs (list) – a list of
Job
to insert.
- msnoise.api.massive_update_job(session, jobs, flag='D')
Routine to use a low level function to update much faster a list of
Job
. This method uses the Job.ref which is unique. :type session: Session :param session: the database connection object :type jobs: list or tuple :param jobs: a list ofJob
to update. :type flag: str :param flag: The destination flag.
- msnoise.api.is_next_job(session, flag='T', jobtype='CC')
Are there any
Job
in the database, with flag=`flag` and jobtype=`type`
- msnoise.api.get_next_job(session, flag='T', jobtype='CC', limit=99999)
Get the next
Job
in the database, with flag=`flag` and jobtype=`jobtype`. Jobs of the same type are grouped per day. This function also sets the flag of all selected Jobs to “I”n progress.- Parameters:
session (
sqlalchemy.orm.session.Session
) – ASession
object, as obtained byconnect()
jobtype (str) – CrossCorrelation (CC) or dt/t (DTT) Job?
flag (str) – Status of the Job: “T”odo, “I”n Progress, “D”one.
- Return type:
list
- Returns:
list of
Job
- msnoise.api.get_dvv_jobs(session, flag='T', jobtype='DVV', limit=99999)
- msnoise.api.is_dtt_next_job(session, flag='T', jobtype='DTT', ref=False)
Are there any DTT
Job
in the database, with flag=`flag` and jobtype=`jobtype`. If ref is provided, checks if a DTT “REF” job is present.- Parameters:
- Return type:
- Returns:
True if at least one Job matches, False otherwise.
- msnoise.api.get_dtt_next_job(session, flag='T', jobtype='DTT')
Get the next DTT
Job
in the database, with flag=`flag` and jobtype=`jobtype`. Jobs are then grouped per station pair. This function also sets the flag of all selected Jobs to “I”n progress.- Parameters:
session (
sqlalchemy.orm.session.Session
) – ASession
object, as obtained byconnect()
jobtype (str) – CrossCorrelation (CC) or dt/t (DTT) Job?
flag (str) – Status of the Job: “T”odo, “I”n Progress, “D”one.
- Return type:
tuple
- Returns:
(pairs, days, refs): List of station pair names - Days of the next DTT jobs - Job IDs (for later being able to update their flag).
- msnoise.api.reset_jobs(session, jobtype, alljobs=False, rule=None)
Sets the flag of all jobtype Jobs to “T”odo.
- Parameters:
session (
sqlalchemy.orm.session.Session
) – ASession
object, as obtained byconnect()
jobtype (str) – CrossCorrelation (CC) or dt/t (DTT) Job?
alljobs (bool) – If True, resets all jobs. If False (default), only resets jobs “I”n progress.
- msnoise.api.reset_dtt_jobs(session, pair)
Sets the flag of all DTT Jobs of one pair to “T”odo.
- Parameters:
session (
sqlalchemy.orm.session.Session
) – ASession
object, as obtained byconnect()
pair (str) – The pair to update
- msnoise.api.get_job_types(session, jobtype='CC')
Count the number of Jobs of a specific type, grouped by flag.
- Parameters:
session (
sqlalchemy.orm.session.Session
) – ASession
object, as obtained byconnect()
jobtype (str) – CrossCorrelation (CC) or dt/t (DTT) Job?
- Return type:
list
- Returns:
list of [count, flag] pairs
- msnoise.api.get_jobs_by_lastmod(session, jobtype='CC', lastmod=datetime.datetime(2024, 9, 20, 16, 16, 33, 138149))
- Parameters:
session (
sqlalchemy.orm.session.Session
) – ASession
object, as obtained byconnect()
jobtype (str) – CrossCorrelation (CC) or dt/t (DTT) Job?
lastmod (datetime.datetime) – Jobs’ modification time
- Return type:
list
- Returns:
list of Job objects.
- msnoise.api.export_allcorr(session, ccfid, data)
- msnoise.api.export_allcorr2(session, ccfid, data)
- msnoise.api.add_corr(session, station1, station2, filterid, date, time, duration, components, CF, sampling_rate, day=False, ncorr=0, params=None)
Adds a CCF to the data archive on disk.
- Parameters:
session (
sqlalchemy.orm.session.Session
) – ASession
object, as obtained byconnect()
station1 (str) – The name of station 1 (formatted NET.STA)
station2 (str) – The name of station 2 (formatted NET.STA)
filterid (int) – The ID (ref) of the filter
date (datetime.date or str) – The date of the CCF
time (datetime.time or str) – The time of the CCF
duration (float) – The total duration of the exported CCF
components (str) – The name of the components used (ZZ, ZR, …)
sampling_rate (float) – The sampling rate of the exported CCF
day (bool) – Whether this function is called to export a daily stack (True) or each CCF (when keep_all parameter is set to True in the configuration). Defaults to True.
ncorr (int) – Number of CCF that have been stacked for this CCF.
params (dict) – A dictionnary of MSNoise config parameters as returned by
get_params()
.
- msnoise.api.export_sac(db, filename, pair, components, filterid, corr, ncorr=0, sac_format=None, maxlag=None, cc_sampling_rate=None, params=None)
- msnoise.api.export_mseed(db, filename, pair, components, filterid, corr, ncorr=0, maxlag=None, cc_sampling_rate=None, params=None)
- msnoise.api.stack(data, stack_method='linear', pws_timegate=10.0, pws_power=2, goal_sampling_rate=20.0)
- Parameters:
data (
numpy.ndarray
) – the data to stack, each row being one CCFstack_method (str) – either
linear
: average of all CCF orpws
to compute the phase weigthed stack. Ifpws
is selected, the function expects thepws_timegate
andpws_power
.pws_timegate (float) – PWS time gate in seconds. Width of the smoothing window to convolve with the PWS spectrum.
pws_power (float) – Power of the PWS weights to be applied to the CCF stack.
goal_sampling_rate (float) – Sampling rate of the CCF array submitted
- Return type:
numpy.array
- Returns:
the stacked CCF.
- msnoise.api.get_extension(export_format)
- msnoise.api.get_ref(session, station1, station2, filterid, components, params=None)
- Parameters:
session (
sqlalchemy.orm.session.Session
) – ASession
object, as obtained byconnect()
station1 (str) – The name of station 1 (formatted NET.STA)
station2 (str) – The name of station 2 (formatted NET.STA)
filterid (int) – The ID (ref) of the filter
components (str) – The name of the components used (ZZ, ZR, …)
params (dict) – A dictionnary of MSNoise config parameters as returned by
get_params()
.
- Return type:
obspy.trace
- Returns:
A Trace object containing the ref
- msnoise.api.get_results(session, station1, station2, filterid, components, dates, mov_stack=1, format='stack', params=None)
- Parameters:
session (
sqlalchemy.orm.session.Session
) – ASession
object, as obtained byconnect()
station1 (str) – The name of station 1 (formatted NET.STA)
station2 (str) – The name of station 2 (formatted NET.STA)
filterid (int) – The ID (ref) of the filter
components (str) – The name of the components used (ZZ, ZR, …)
dates (list) – List of TODO datetime.datetime
mov_stack (int) – Moving window stack.
format (str) – Either
stack
: the data will be stacked according to the parameters passed withparams
ormatrix
: to get a 2D array of CCF.params (dict) – A dictionnary of MSNoise config parameters as returned by
get_params()
.
- Return type:
- Returns:
Either a 1D CCF (if format is
stack
or a 2D array (if format=matrix
).
- msnoise.api.get_mwcs(session, station1, station2, filterid, components, date, mov_stack=1)
TODO
- msnoise.api.get_results_all(session, station1, station2, filterid, components, dates, format='dataframe')
- Parameters:
session (
sqlalchemy.orm.session.Session
) – ASession
object, as obtained byconnect()
station1 (str) – The name of station 1 (formatted NET.STA)
station2 (str) – The name of station 2 (formatted NET.STA)
filterid (int) – The ID (ref) of the filter
components (str) – The name of the components used (ZZ, ZR, …)
dates (list) – List of TODO datetime.datetime
- Return type:
- Returns:
All CCF results in a
pandas.DataFrame
, where the index is the time of the CCF and the columns are the times in the coda.
- msnoise.api.get_maxlag_samples(session)
Returns the length of the CC functions. Gets the maxlag and sampling rate from the database.
- Parameters:
session (
sqlalchemy.orm.session.Session
) – ASession
object, as obtained byconnect()
- Return type:
- Returns:
the length of the CCF in samples
- msnoise.api.get_t_axis(session)
Returns the time axis (in seconds) of the CC functions. Gets the maxlag from the database and uses get_maxlag_samples function.
- Parameters:
session (
sqlalchemy.orm.session.Session
) – ASession
object, as obtained byconnect()
- Return type:
numpy.array
- Returns:
the time axis in seconds
- msnoise.api.get_components_to_compute(session, plugin=None)
Returns the components configured in the database.
- Parameters:
session (
sqlalchemy.orm.session.Session
) – ASession
object, as obtained byconnect()
- Return type:
list of str
- Returns:
a list of components to compute
- msnoise.api.get_components_to_compute_single_station(session, plugin=None)
Returns the components configured in the database.
- Parameters:
session (
sqlalchemy.orm.session.Session
) – ASession
object, as obtained byconnect()
- Return type:
list of str
- Returns:
a list of components to compute
- msnoise.api.build_ref_datelist(session)
Creates a date array for the REF. The returned tuple contains a start and an end date, and a list of individual dates between the two.
- Parameters:
session (
sqlalchemy.orm.session.Session
) – ASession
object, as obtained byconnect()
- Return type:
tuple
- Returns:
(start, end, datelist)
- msnoise.api.build_movstack_datelist(session)
Creates a date array for the analyse period. The returned tuple contains a start and an end date, and a list of individual dates between the two.
- Parameters:
session (
sqlalchemy.orm.session.Session
) – ASession
object, as obtained byconnect()
- Return type:
tuple
- Returns:
(start, end, datelist)
- msnoise.api.updated_days_for_dates(session, date1, date2, pair, jobtype='CC', interval=datetime.timedelta(days=1), returndays=False)
Determines if any Job of jobtype=`jobtype` and for pair=`pair`, concerning a date between date1 and date2 has been modified in the last interval=`interval`.
- Parameters:
session (
sqlalchemy.orm.session.Session
) – ASession
object, as obtained byconnect()
date1 (datetime.datetime) – Beginning of the period of interest
date2 (datetime.datetime) – End of the period of interest
pair (str) – Pair of interest
jobtype (str) – CrossCorrelation (CC) or dt/t (DTT) Job?
interval (datetime.timedelta) – Interval of time before now to search for updated days
returndays (bool) – Whether to return a list of days (True) or not (False, default)
- Return type:
list or bool
- Returns:
List of days if returndays is True, only “True” if not. (not clear!)
- msnoise.api.azimuth(coordinates, x0, y0, x1, y1)
Returns the azimuth between two coordinate sets.
- msnoise.api.nextpow2(x)
Returns the next power of 2 of x.
- msnoise.api.check_and_phase_shift(trace, taper_length=20.0)
- msnoise.api.getGaps(stream, min_gap=None, max_gap=None)
- msnoise.api.make_same_length(st)
This function takes a stream of equal sampling rate and makes sure that all channels have the same length and the same gaps.
- msnoise.api.preload_instrument_responses(session, return_format='dataframe')
This function preloads all instrument responses from
response_format
and stores the seed ids, start and end dates, and paz for every channel in a DataFrame.Warning
This function only works for
response_format
being “inventory” or “dataless”.- Parameters:
session (
sqlalchemy.orm.session.Session
) – ASession
object, as obtained byconnect()
- Return type:
- Returns:
A table containing all channels with the time of operation and poles and zeros.
- msnoise.api.to_sds(stats, year, jday)
- msnoise.api.psd_read_results(net, sta, loc, chan, datelist, format='PPSD', use_cache=True)
- msnoise.api.psd_ppsd_to_dataframe(ppsd)
- msnoise.api.hdf_open_store_from_fn(fn, mode='a')
- msnoise.api.hdf_open_store(filename, location='PSD\\HDF', mode='a', format='table')
- msnoise.api.hdf_insert_or_update(store, key, new)
- msnoise.api.hdf_close_store(store)
- msnoise.api.xr_create_or_open(fn, taxis=[], name='CCF')
- msnoise.api.xr_insert_or_update(dataset, new)
- msnoise.api.xr_save_and_close(dataset, fn)
- msnoise.api.get_dvv(session, filterid, components, dates, mov_stack=1, aggregation='median', dttname='M')
- msnoise.api.xr_save_ccf(station1, station2, components, filterid, mov_stack, taxis, new, overwrite=False)
- msnoise.api.xr_get_ccf(station1, station2, components, filterid, mov_stack, taxis, format='dataframe')
- msnoise.api.xr_save_ref(station1, station2, components, filterid, taxis, new, overwrite=False)
- msnoise.api.xr_get_ref(station1, station2, components, filterid, taxis)
- msnoise.api.xr_save_mwcs(station1, station2, components, filterid, mov_stack, taxis, dataframe)
- msnoise.api.xr_get_mwcs(station1, station2, components, filterid, mov_stack)
- msnoise.api.xr_save_dtt(station1, station2, components, filterid, mov_stack, dataframe)
- Parameters:
station1 – string, name of station 1
station2 – string, name of station 2
components – string, name of the components
filterid – int, filter id
mov_stack – int, number of days in the moving stack
dataframe – pandas DataFrame containing the data
- Returns:
None
This method saves the given data in a NetCDF file using the specified parameters. The file path is constructed based on the station names, components, filter id, and moving stack number *. The data in the DataFrame is stacked, and the index is set to include “times” and “keys” as names. The column in the DataFrame is renamed to “DTT”. A new or existing NetCDF file is * opened using the given file path, and the stacked data is inserted or updated in the file. The resulting dataset is then saved and the file is closed.
- msnoise.api.xr_get_dtt(station1, station2, components, filterid, mov_stack)
- Parameters:
station1 – The first station name
station2 – The second station name
components – The components to be used
filterid – The filter ID
mov_stack – The movement stack
- Returns:
The extracted data
This method retrieves the DTT data from a NetCDF file based on the given inputs. It constructs the file path using the provided parameters and checks if the file exists. If the file * does not exist, it raises a FileNotFoundError. Otherwise, it opens the NetCDF file and extracts the DTT variable as a dataframe. The dataframe is then rearranged and returned as the * result.
- msnoise.api.xr_save_dvv(components, filterid, mov_stack, dataframe)
- msnoise.api.xr_get_dvv(components, filterid, mov_stack)
- msnoise.api.wavg(group, dttname, errname)
Calculate the weighted average of a given group using the provided parameters.
- Parameters:
group – A pandas DataFrame or Series representing the group of data.
dttname – The name of the column containing the data to be averaged.
errname – The name of the column containing the error for each data point.
- Returns:
The weighted average of the data.
- msnoise.api.wstd(group, dttname, errname)
- Parameters:
group – A dictionary containing data for different groups.
dttname – The key in the group dictionary that corresponds to the data array.
errname – The key in the group dictionary that corresponds to the error array.
- Returns:
The weighted standard deviation of the data array.
This method calculates the weighted standard deviation of the data array specified by dttname in the group dictionary. The weights are derived from the error array specified by errname in the group dictionary.
- The weighted standard deviation is computed using the following formula:
wstd = sqrt(sum(w * (d - wavg) ** 2) / ((N - 1) * sum(w) / N))
- where:
d is the data array specified by dttname in the group dictionary.
w is the weight array derived from the error array specified by errname in the group dictionary.
wavg is the weighted average of the data array.
N is the number of non-zero weights.
Note: This method uses the np module from NumPy.
- msnoise.api.get_wavgwstd(data, dttname, errname)
Calculate the weighted average and weighted standard deviation for a given data.
- Parameters:
data (pandas.DataFrame) – The data to calculate the weighted average and weighted standard deviation.
dttname (str) – The name of the column in the data frame containing the weights for the weighted average and weighted standard deviation calculation.
errname (str) – The name of the column in the data frame containing the errors on the data.
- Returns:
A tuple containing the calculated weighted average and weighted standard deviation.
- Return type:
tuple
- msnoise.api.trim(data, dttname, limits=0.1)
Trimmed mean and standard deviation calculation.
- Parameters:
data – DataFrame containing the data.
dttname – Name of the column used for grouping.
limits – Trimming limits (default is 0.1).
- Returns:
Tuple containing the trimmed mean and trimmed standard deviation.
- msnoise.api.compute_dvv(session, filterid, mov_stack, pairs=None, components=None, params=None, method=None, **kwargs)
Compute DVV statistics for a given seismic session, filter ID, and movement stack. The method calculates various statistical measures for DVV values based on the provided parameters.
- Parameters:
session (object) – Seismic session object.
filterid (str) – ID of the filter.
mov_stack (object) – Movement stack object.
pairs (list, optional) – List of station pairs. Defaults to None.
components (str, optional) – Component(s) to compute DVV for. Defaults to None.
params (object, optional) – Parameters object containing configuration settings. Defaults to None.
method (str, optional) – Method to use for computation. Defaults to None.
**kwargs –
Additional keyword arguments
- Returns:
DataFrame containing the computed statistical measures for DVV values.
- Return type:
DataFrame
- Raises:
ValueError – If no DVV values are computed.
- msnoise.api.xr_save_wct(station1, station2, components, filterid, mov_stack, taxis, dvv_df, err_df, coh_df)
Save the Wavelet Coherence Transform (WCT) results as a NetCDF file.
- Parameters:
station1 (str) – The first station in the pair.
station2 (str) – The second station in the pair.
components (str) – The components (e.g., Z, N, E) being analyzed.
filterid (int) – Filter ID used in the analysis.
mov_stack (tuple) – Tuple of (start, end) representing the moving stack window.
taxis (array-like) – Time axis corresponding to the WCT data.
dvv_df (pandas.DataFrame) – DataFrame containing dvv data (2D).
err_df (pandas.DataFrame) – DataFrame containing err data (2D).
coh_df (pandas.DataFrame) – DataFrame containing coh data (2D).
- Returns:
None