
MSNoise Documentation
Release 1.6

Thomas Lecocq and MSNoise Devs

Sep 03, 2019

CONTENTS

1 Installation 3
1.1 Installation . 3

1.1.1 Full Installation . 4
1.1.2 MySQL Server and Workbench . 5
1.1.3 MySQL/MariaDB configuration . 10
1.1.4 Database Structure - Tables . 10
1.1.5 Building this documentation . 10
1.1.6 Using the development version . 10

2 Workflow 13
2.1 Workflow . 13

2.1.1 Initialize Project . 13
2.1.2 MSNoise Admin (Web Interface) . 14
2.1.3 Populate Station Table . 23
2.1.4 Scan Archive . 24
2.1.5 New Jobs . 25
2.1.6 Compute Cross-Correlations . 25
2.1.7 Stack . 33
2.1.8 Compute MWCS . 35
2.1.9 Compute dt/t . 36

3 Plotting 41
3.1 Plotting . 41

3.1.1 Customizing Plots . 41
3.1.2 Data Availability Plot . 42
3.1.3 Station Map . 43
3.1.4 Interferogram Plot . 43
3.1.5 CCF vs Time . 44
3.1.6 CCF’s spectrum vs Time . 47
3.1.7 MWCS Plot . 50
3.1.8 Distance Plot . 51
3.1.9 dv/v Plot . 52
3.1.10 dt/t Plot . 53

4 Interacting with MSNoise 55
4.1 How To’s . 55

4.1.1 Run the simplest MSNoise run ever . 55
4.1.2 Run MSNoise using lots of cores on a HPC 55
4.1.3 Reprocess data . 58

i

4.1.4 Define one’s own data structure of the waveform archive 59
4.1.5 How to have MSNoise work with 2+ data structures at the same time . 59
4.1.6 How to duplicate/dump the MSNoise configuration 59
4.1.7 Testing the Dependencies . 60

4.2 Interaction Examples & Gallery . 61
4.2.1 Plot a Reference CCF . 62
4.2.2 Plot an interferogram . 63

4.3 MSNoise API . 66
4.4 Core Functions . 79
4.5 Extending MSNoise with Plugins . 82

4.5.1 What is a Plugin and how to declare it in MSNoise 82
4.5.2 Plugin minimal structure . 82
4.5.3 Declaring Job Types - Hooking . 84
4.5.4 Plugin’s own config table . 86
4.5.5 Adding Web Admin Pages . 88
4.5.6 Uninstalling Plugins . 89
4.5.7 Download Amazing Plugin . 89

4.6 Help on the msnoise commands . 90
4.6.1 msnoise admin . 90
4.6.2 msnoise bugreport . 90
4.6.3 msnoise compute cc . 90
4.6.4 msnoise compute cc rot . 90
4.6.5 msnoise compute dtt . 91
4.6.6 msnoise compute mwcs . 91
4.6.7 msnoise compute stretching . 91
4.6.8 msnoise config . 91
4.6.9 msnoise db . 92
4.6.10 msnoise info . 94
4.6.11 msnoise install . 94
4.6.12 msnoise jupyter . 95
4.6.13 msnoise new jobs . 95
4.6.14 msnoise p . 95
4.6.15 msnoise plot . 95
4.6.16 msnoise plugin . 99
4.6.17 msnoise populate . 99
4.6.18 msnoise reset . 100
4.6.19 msnoise scan archive . 100
4.6.20 msnoise stack . 100
4.6.21 msnoise test . 101
4.6.22 msnoise upgrade-db . 101

5 Development & Miscellaneous 103
5.1 Table Definitions . 103
5.2 About Databases and Performances . 106
5.3 References . 107
5.4 Contributors . 107
5.5 Release Notes . 107

Bibliography 109

ii

MSNoise Documentation, Release 1.6

Originally, MSNoise was a “Python Package for Monitoring Seismic Velocity Changes using
Ambient Seismic Noise”. With the release of MSNoise 1.4, and because of the Plugin Support,
we could call MSNoise: “Measuring with Seismic Noise”. The current release version of MSNoise
is MSNoise 1.6.

The standard MSNoise workflow is designed to go from seismic data archives to dv/v curves.
The monitoring is achieved by computing the cross-correlation of continuous seismic records for
each pair of a network and by studying the changes in the cross-correlation function relative to
a reference.

The goal of the “suite” is to provide researchers with an efficient processing tool, while keeping
the need for coding to a minimum and avoiding being a black box. Moreover, as long as the in-
and outputs of each step are respected, they can easily be replaced with one’s own codes ! (See
Workflow (page 13)).

Plugins can be added and extend the standard workflow from any steps, e.g. using MSNoise as
a cross-correlation toolbox until the stack step, and then branching to the workflow provided
by one’s plugin.

If you use MSNoise for your research and prepare publications, please consider citing MSNoise:
Lecocq, T., C. Caudron, et F. Brenguier (2014), MSNoise, a Python Package for Moni-
toring Seismic Velocity Changes Using Ambient Seismic Noise, Seismological Research Letters,
85(3), 715-726, doi:10.1785/0220130073.

This documentation is also available in PDF format on the MSNoise Website (PDF).

CONTENTS 1

http://msnoise.org/doc/MSNoise.pdf

MSNoise Documentation, Release 1.6

2 CONTENTS

CHAPTER

ONE

INSTALLATION

1.1 Installation

MSNoise is a python package that uses a database (sqlite or MySQL) for storing station and
files metadata together with jobs. When installed, it provides a top level command msnoise in
the console.

This version will be the last to be tested on Python 2.7. The EOL (end of life) of 2.7 is 2020,
which means it is high time for users to migrate. For users having a complete set of tools in
Python 2.7 and not keen to move to 3.x soon, the incredible easiness of creating a Python 3.x
environment in conda, for example, will allow them to run MSNoise in the future.

Note that MSNoise is always tested against the latest release versions of the main packages, so
older installations that are not maintained/updated regularly (years) could encounter issues.
Please make sure you have the latest version of Numpy and Scipy (and MKL), as performance
gets better and better (especially since Anaconda Inc. released its fast MKL implementations
for all users, in the conda-forge channel).

To run MSNoise, you need:

• A recent version of Python (3.x recommended). We suggest using Anaconda with a few
extra modules. MSNoise is tested “continuously” by automatic build systems (TravisCI
and Appeveyor) for Python 2.7 and Python 3.7, on Windows, Linux and MacOSX
64 bits systems! Support for Python 2 .7 will be dropped as soon as the TravisCI test
don’t pass and the corrections would take too much dev time.

– Those modules are already distributed with Anaconda:

∗ setuptools

∗ numpy

∗ scipy

∗ pandas

∗ matplotlib

∗ statsmodels

∗ sqlalchemy

∗ click

∗ flask

∗ pymysql

3

http://www.continuum.io/downloads
http://www.continuum.io/downloads

MSNoise Documentation, Release 1.6

∗ wtforms

– Not shipped with Anaconda:

∗ obspy

∗ flask-admin

∗ markdown

∗ folium

∗ flask-wtf

• MySQL: if you want to use MySQL, you need to install and configure a MySQL Server
beforehand. This is not needed for sqlite. Read About Databases and Performances
(page 106) for more information. We recommend using MySQL.

1.1.1 Full Installation

1. Download and install Anaconda for your machine, make sure Anaconda’s Python is the
default python for your user

2. Execute the following command to install the missing packages:

conda install -c conda-forge flask-admin flask-wtf markdown folium pymysql

→˓logbook

conda install -c conda-forge obspy

3. Install a MySQL server and MySQL Workbench:

Download and install MySQL Community Server (MySQLs) and MySQL Workbench
(MySQLw) ; On Windows one can also use the MySQL installer (MySQLi).

On Linux, the MySQL server can also be installed using the following command:

sudo apt-get install mysql-server

4. Create a privileged user and a database:

• Start MySQL Workbench and connect to the local database

• Click on “Privileges” and create a new user, with all privileges (Select all). Ideally,
create user “msnoise” with password “msnoise”.

5. Install the latest release version of MSNoise:

pip install msnoise

Power user could install the development version too, but it is not recommended.

6. Check which required packages you are still missing by executing the msnoise bugreport

command. (See Testing the Dependencies (page 60))

7. To be sure all is running OK, one could start the msnoise test command. This will start
the standard MSNoise test suite, which should end with a “Ran xx tests in yy seconds :
OK”.

8. Proceed to the Workflow (page 13) description to start MSNoise!

Done !

4 Chapter 1. Installation

http://www.continuum.io/downloads
http://www.continuum.io/downloads
https://dev.mysql.com/downloads/mysql
https://dev.mysql.com/downloads/workbench
https://dev.mysql.com/downloads/installer

MSNoise Documentation, Release 1.6

1.1.2 MySQL Server and Workbench

Using the MySQL Server and Workbench is fairly easy and lots of tutorials are available online
as text or videos.

Once both are installed, start Workbench and you should see the local MySQL server automat-
ically identified:

And by clicking on “Local Instance . . . ” another tab should open, connected to the local
database.

Create a msnoise user

Select “Users and Privileges” in the left sidebar, then “Add Account”. Define the username
and the password (msnoise:msnoise could do, although “weak”):

1.1. Installation 5

MSNoise Documentation, Release 1.6

Then, under “Administrative Roles”, grant this user the DBA mode (user can perform all tasks
on the database server) and click “Apply”.

6 Chapter 1. Installation

MSNoise Documentation, Release 1.6

Create an empty database

Ideally, each “project” needs a database. For example, if one has two different volcanoes and
wants to run MSNoise using the these distinct datasets, one needs to create two empty databases.
For users who have access to only 1 database, the `msnoise db init allows to provide a
prefix`, which works like the Wordpress prefixes: for example if a prefix is “vA”, the `config

table that will be created is vA config in the database.

Click on the “Create new schema” button in the taskbar:

and provide a name for the database (for example msnoise; or msnoise project1, or project1, or
anything else) ; and click “Apply”:

1.1. Installation 7

MSNoise Documentation, Release 1.6

and click “Apply” again and it should state all is OK:

8 Chapter 1. Installation

MSNoise Documentation, Release 1.6

When done, the database we can be seen in the left sidebar:

And you’re ready to start your first project: Workflow (page 13).

1.1. Installation 9

MSNoise Documentation, Release 1.6

When moving your project to a larger server, HPC or else, just add the connection to this server
in Workbench and you’re good to go with the very same interface/tool !

1.1.3 MySQL/MariaDB configuration

You can also set up a database server using MariaDB, there are plenty tutorials of how to set
it up as well. The new default character set for MySQL or MariaDB is not simple utf8, so
make sure that the configuration file (/etc/mysql/my.cnf under Linux) contains the following
lines. There are issues with the latest MySQL versions which prevent a “traditional group by”
statement.

[mysqld]

character-set-server=utf8

collation-server=utf8_unicode_ci

sql_mode="TRADITIONAL,NO_AUTO_CREATE_USER"

For Mac, this seemed to work for users (see Issue72):

[mysqld]

sql_mode=STRICT_TRANS_TABLES,NO_ZERO_IN_DATE,NO_ZERO_DATE,ERROR_FOR_DIVISION_BY_ZERO,

→˓NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION

1.1.4 Database Structure - Tables

MSNoise will create the tables automatically upon running the installer script (see Workflow
(page 13)).

1.1.5 Building this documentation

To build this documentation, some modules are required:

pip install sphinx

pip install sphinx_bootstrap_theme

Then, this should simply work:

make html

it will create a .build folder containing the documentation.

You can also build the doc to Latex and then use your favorite Latex-to-PDF tool.

1.1.6 Using the development version

This is not recommended, but users willing to test the latest development (hopefully stable)
version of MSNoise can:

pip uninstall msnoise

pip install http://msnoise.org/master.zip

10 Chapter 1. Installation

https://mariadb.org
https://github.com/ROBelgium/MSNoise/issues/72

MSNoise Documentation, Release 1.6

Please note this version most probably uses the very latest version of every package: Release
versions of numpy, scipy, etc obtained from conda-forge and “master” version of obspy. The
development version (master) of obspy can be installed from github:

pip uninstall obspy

pip install https://github.com/obspy/obspy/archive/master.zip

If you are using the master version, please use the issue tracker of github to communicate about
bugs and not the mailing list, preferably used for Releases.

1.1. Installation 11

MSNoise Documentation, Release 1.6

12 Chapter 1. Installation

CHAPTER

TWO

WORKFLOW

2.1 Workflow

This section only presents the “init” and configuration of MSNoise (read “the first startup
of MSNoise”), not the installation of the required software, which is described in Installation
(page 3).

2.1.1 Initialize Project

This console script is responsible for asking questions about the database connection, to create
the db.ini file and to create the tables in the database.

Questions are:

• What database technology do you want to use?

– sqlite: this will create a file in the current folder and use it as DB

– mysql: this will connect to a local or remote mysql server, additional information is
then required:

∗ hostname: of the mysql server, defaults to 127.0.0.1

13

MSNoise Documentation, Release 1.6

∗ database: must already exist on hostname

∗ username: as registered in the privileged users of the mysql server

∗ password: his password

∗ prefix: useful when users have only access to a single database. Similar to the
way wordpress handles prefixes. The tables will be named %prefix% config

(etc) instead of config, for example.

The SQLite choice will create a xxx.sqlite file in the current (project) folder, while, for MySQL,
one has to create an empty database first on the mysql server, see how to do this (page 7) .

To run this script:

msnoise db init --help

Usage: [OPTIONS]

This command initializes the current folder to be a MSNoise Project by

creating a database and a db.ini file.

Options:

--tech TEXT Database technology: 1=SQLite 2=MySQL

--help Show this message and exit.

Warning: The credentials will be saved in a flat text file in the current directory. It’s not
very safe, but until now we haven’t thought of another solution.

2.1.2 MSNoise Admin (Web Interface)

MSNoise Admin is a web interface that helps the user define the configuration for all the
processing steps. It allows configuring the stations and filters to be used in the different steps
of the workflow and provides a view on the database tables.

To start the admin:

$ msnoise admin

Which, by default, starts a web server listening on all interfaces on port 5000. This can be
overridden by passing parameters to the command, e.g. for port 5099:

$ msnoise admin -p 5099

The next step consists of opening a web browser and open the ip address of the machine, by
default on the current machine, it’ll be http://localhost:5000/ or http://127.0.0.1:5000/.

14 Chapter 2. Workflow

http://localhost:5000/
http://127.0.0.1:5000/

MSNoise Documentation, Release 1.6

The top level menu shows four items:

Home

The index page shows

• The project location and its database

• Stats of the Data Availability, the CC, STACK, MWCS and DTT jobs.

• Quick action buttons for resetting or deleting jobs.

The name and the logo of the page can be overridden by setting an environment variable with
a name and the HTML tag of the logo image:

set msnoise_brand="ROB|<img src='http://www.seismologie.be/img/oma/ROB-logo.svg'
→˓width=200 height=200>"

and then starting msnoise admin:

2.1. Workflow 15

MSNoise Documentation, Release 1.6

Configuration

Station

Stations appear as a table and are editable.

Stations are defined as:

class msnoise.msnoise admin.Station(*args)
Station Object

Parameters

• ref (int) – The Station ID in the database

• net (str) – The network code of the Station

• sta (str) – The station code

• X (float) – The X coordinate of the station

• Y (float) – The Y coordinate of the station

• altitude (float) – The altitude of the station

• coordinates (str) – The coordinates system. “DEG” is WGS84 lati-
tude/ longitude in degrees. “UTM” is expressed in meters.

• instrument (str) – The instrument code, useful with PAZ correction

• used (bool) – Whether this station must be used in the computations.

Attributes

X

Y

altitude

coordinates

instrument

net

16 Chapter 2. Workflow

https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool

MSNoise Documentation, Release 1.6

ref

sta

used

Filter

Filters appear as a table and are editable. The filter parameters are validated before submission,
so no errors should happen. Note: by default, the used parameter is set to False, don’t forget
to change it!

Filters are defined as:

class msnoise.msnoise admin.Filter(**kwargs)
Filter base class.

Parameters

• ref (int) – The id of the Filter in the database

• low (float) – The lower frequency bound of the Whiten function (in
Hz)

• high (float) – The upper frequency bound of the Whiten function (in
Hz)

• mwcs low (float) – The lower frequency bound of the linear regression
done in MWCS (in Hz)

• mwcs high (float) – The upper frequency bound of the linear regres-
sion done in MWCS (in Hz)

• rms threshold (float) – Not used anymore

• mwcs wlen (float) – Window length (in seconds) to perform MWCS

• mwcs step (float) – Step (in seconds) of the windowing procedure in
MWCS

• used (bool) – Is the filter activated for the processing

Attributes

high

low

mwcs high

mwcs low

mwcs step

mwcs wlen

ref

rms threshold

used

2.1. Workflow 17

https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#bool

MSNoise Documentation, Release 1.6

Config

All configuration bits appear as a table and are editable. When editing one configuration item,
the Edit tab shows extra information about the parameter, where it is used and its default
value. Most of the configuration bits are case-sensitive!

Example view:

The table below lists the different fields:

Parameter Name Description Default Value

data folder Data Folder

output folder CC Output Folder in case
keep all=Y, to store the in-
dividual windows. The daily
CCF will always be stored
in the STACKS/001 DAYS
folder.

CROSS CORRELATIONS

data structure Either a predefined acronym
[SDS]/BUD/IDDS,

or /-separated path (e.g.
NET/STA/YEAR/NET.STA.YEAR.DAY.MSEED).

SDS

archive format Force format of archive files
to read? Leave empty for
slightly slower auto-detection
by Obspy, or specify any
format supported by ob-
spy.core.stream.read.

network Network to analyse [*]
•

Continued on next page

18 Chapter 2. Workflow

MSNoise Documentation, Release 1.6

Table 1 – continued from previous page

Parameter Name Description Default Value

channels Channels need to match the
value (ex: [*], *Z, BH*,
HHZ,. . .)

•

startdate Start Date to process: [1970-
01-01]=’since beginning of
the archive’

1970-01-01

enddate End Date to process: [2100-
01-01]=’No end’

2021-01-01

analysis duration Duration of the Analysis (to-
tal in seconds : 3600, [86400])

86400

cc sampling rate Sampling Rate for the Cross-
Correlation [20.0]

20.0

resampling method Resampling method Deci-
mate/[Lanczos]

Lanczos

preprocess lowpass Preprocessing Low-pass
value in Hz [8.0]

8.0

preprocess highpass Preprocessing High-pass
value in Hz [0.01]

0.01

preprocess max gap Preprocessing maximum gap
length that will be filled by
interpolation [10.0] seconds

10.0

preprocess taper length Duration of the taper applied
at the beginning and end of
trace during the preprocess-
ing, to allow highpassfiltering

20.0

remove response Remove instrument response
Y/[N]

N

response format Remove instrument
file format [data-
less]/inventory/paz/resp

dataless

response path Instrument correction file(s)
location (path relative to
db.ini), defaults to ‘./in-
ventory’, i.e. a subfolder
in the current project
folder.
All files in that
folder will be parsed.

inventory

response prefilt Remove instrument correc-
tion pre-filter (0.005, 0.006,
30.0, 35.0)

(0.005, 0.006, 30.0, 35.0)

maxlag Maximum lag (in seconds)
[120.0] 120.

corr duration Data windows to correlate (in
seconds) [1800.] 1800.

overlap Amount of overlap between
data windows [0:1[[0.]

0.0

Continued on next page

2.1. Workflow 19

MSNoise Documentation, Release 1.6

Table 1 – continued from previous page

Parameter Name Description Default Value

windsorizing Windsorizing at N time RMS
, 0 disables windsorizing, -
1 enables 1-bit normalization
[3]

3

whitening Whiten Traces before cross-
correlation: [A]ll (except for
autocorr), [N]one, or only if
[C]omponents are different:
[A]/N/C

A

whitening type Type of spectral whitening
function to use: [B]rutal
(amplitude to 1.0), divide
spectrum by its [PSD]:
[B]/PSD. WARNING: only
works for compute cc, not
compute cc rot, where it will
always be [B]

B

stack method Stack Method: Linear Mean
or Phase Weighted Stack:
[linear]/pws

linear

pws timegate If stack method=’pws’,
width of the smoothing in
seconds : 10.0

10.0

pws power If stack method=’pws’,
Power of the Weighting: 2.0

2.0

crondays Number of days to monitor
with scan archive, typically
used in cron (should be a
float representing a number
of days, or a string desig-
nating weeks, days, and/or
hours using the format ‘Xw
Xd Xh’) [1]

1

components to compute List (comma separated) of
components to compute be-
tween two different stations
[ZZ]

ZZ

cc type Cross-Correlation type [CC] CC

components to compute single stationList (comma separated) of
components within a single
station. ZZ would be the
autocorrelation of Z compo-
nent, while ZE or ZN are the
cross-components. Defaults
to [], no single-station com-
putations are done.

cc type single station AC Auto-Correlation type [CC] CC

Continued on next page

20 Chapter 2. Workflow

MSNoise Documentation, Release 1.6

Table 1 – continued from previous page

Parameter Name Description Default Value

cc type single station SC Cross-Correlation type for
Cross-Components [CC]

CC

autocorr DEPRECATED, add the
components to compute on
single stations in the compo-
nents to compute single station
config parameter.

N

keep all Keep all cross-corr (length:
corr duration) [Y]/N

N

keep days Keep all daily cross-corr
[Y]/N

Y

ref begin Beginning or REF stacks.
Can be absolute (2012-01-01)
or relative (-100) days

1970-01-01

ref end End or REF stacks. Same as
ref begin

2021-01-01

mov stack Number of days to stack for
the Moving-window stacks
([5]= [day-4:day]), can be
a comma-separated list
1,2,5,10

5

export format Export stacks in
which format(s) ?
SAC/MSEED/[BOTH]

MSEED

sac format Format for SAC stacks ?
[doublets]/clarke

doublets

dtt lag How is the lag window de-
fined [dynamic]/static

static

dtt v If dtt lag=dynamic: what
velocity to use to avoid bal-
listic waves [1.0]km/s

1.0

dtt minlag If dtt lag=static: min lag
time

5.0

dtt width Width of the time lag window
[30]s

30.0

dtt sides Which sides to use
[both]/left/right

both

dtt mincoh Minimum coherence on dt
measurement, MWCS points
with values lower than that
will not be used in the WLS

0.65

dtt maxerr Maximum error on dt mea-
surement, MWCS points
with values larger than that
will not be used in the WLS

0.1

Continued on next page

2.1. Workflow 21

MSNoise Documentation, Release 1.6

Table 1 – continued from previous page

Parameter Name Description Default Value

dtt maxdt Maximum dt values, MWCS
points with values larger
than that will not be used in
the WLS

0.1

plugins Comma separated list of plu-
gin names. Plugins names
should be importable Python
modules.

hpc Is MSNoise going to run on
an HPC? Y/[N]

N

stretching max Maximum stretching coeffi-
cient, e.g. 0.5 = 50%, 0.01
= 1%

0.01

stretching nsteps Number of stretching steps
between 1-stretching max
and 1+stretching max

1000

Database

Data Availability

Gives a view of the data availability table. Allows to bulk edit/select rows. Its main goal is
to check that the scan archive procedure has successfully managed to list all files from one’s
archive.

Jobs

Gives a view of the jobs table. Allows to bulk edit/select rows. Its main goal is to check the
new jobs or any other workflow step (or Plugins) successfully inserted/updated jobs.

Help

About

Shows some links and information about the package. Mostly the information present on the
github readme file.

Bug Report

Web view of the msnoise bugreport -m, allows viewing if all required python modules are properly
installed and available for MSNoise.

22 Chapter 2. Workflow

MSNoise Documentation, Release 1.6

2.1.3 Populate Station Table

This script is responsible for rapidly scanning the data archive, identifying the Net-
works/Stations and inserting them in the stations table in the database.

The data folder (as defined in the config) is scanned following the data structure. Possible
values for the data structure are defined in data structures.py :

data_structure['SDS'] = "YEAR/NET/STA/CHAN.TYPE/NET.STA.LOC.CHAN.TYPE.YEAR.DAY"

data_structure['BUD'] = "NET/STA/STA.NET.LOC.CHAN.YEAR.DAY"

data_structure['IDDS'] = "YEAR/NET/STA/CHAN.TYPE/DAY/NET.STA.LOC.CHAN.TYPE.YEAR.DAY.

→˓HOUR"

data_structure['PDF'] = "YEAR/STA/CHAN.TYPE/NET.STA.LOC.CHAN.TYPE.YEAR.DAY"

If your data structure corresponds to one of these 4 structures, you need to select the corre-
sponding acronym (SDS, BUD, IDDS or PDF) for the data structure field.

More info on the recommended SDS (“SeisComP Data Structure”) can be found here: https://
www.seiscomp3.org/wiki/doc/applications/slarchive/SDS For other simple structures, one has
to edit the data structure configuration (see below).

By default, station coordinates are initialized at 0.

To run this script:

$ msnoise populate

Custom data structure & station table population

If one’s data structure does not belong to the pre-defined ones, it can be defined directly in the
data structure configuration field using forward slashes, e.g.:

data structure = “NET/STA/YEAR/NET.STA.YEAR.DAY.MSEED”

MSNoise expects to find a file named custom.py in the current folder. This python file will
contain a function called populate wich will accept one argument and return a station dic-
tionary with keys of the format NET STA , and fields for the stations table in the database:
Net,Sta,X,Y,Altitude, Coordinates(UTM/DEG),Instrument.

import os, glob

def populate(data_folder):

datalist = sorted(glob.glob(os.path.join(data_folder, "*", "*")))

stationdict = {}

for di in datalist:

tmp = os.path.split(di)

sta = tmp[1]

net = os.path.split(tmp[0])[1]

stationdict[net+"_"+sta]=[net,sta,0.0,0.0,0.0,'UTM','N/A']
return stationdict

Expert (lazy) mode:

If the DataAvailability has already been filled in by another process, for example using the
“scan from path” (page 24) procedure, the network/station names can be “populated” from the
DataAvailability table automatically. To do this, simply run:

2.1. Workflow 23

https://www.seiscomp3.org/wiki/doc/applications/slarchive/SDS
https://www.seiscomp3.org/wiki/doc/applications/slarchive/SDS

MSNoise Documentation, Release 1.6

msnoise populate --fromDA

and MSNoise will insert the unique NET.STA in the Stations table.

2.1.4 Scan Archive

One advantage of MSNoise is its ability to be used as an automated monitoring tool. In order
to run every night on the data acquired during the previous day, MSNoise needs to check the
data archive for new or modified files.

Those files could have been acquired during the last day, but be data of a previously offline
station and contain useful information for, say, a month ago. The time to search for is defined
in the config from the ‘crondays’ value. For convenience, this parameter can be temporarily
redefined on the command line using the –crondays option of the scan archive sub-command.
In both cases, it can be a float designating a number of days in the past, or a string designating
a number of weeks, days, and/or hours in the format ‘Xw Xd Xh’ (each group being optional,
as well as the separating blanks).

The scan archive script inspects the modified time attribute (‘mtime’) of files in the archives to
locate new or modified files. Once located, they are inserted (if new) or updated (if modified)
in the data availability table.

To run the code on two Process, execute the following in console:

$ msnoise -t 2 scan_archive

Compulsory Special case: first run

This script is the same as for the routine, but one has to pass the –init option. The scan archive

will scan all files in the data folders, regardless of their modification time.

$ msnoise -t 2 scan_archive --init

This will scan the data archive folder the configured stations and will insert all files found in
the data availability table in the database. As usual, calling the script with a –help argument
will show its usage.

Expert (lazy) mode:

Sometimes, you only want to scan a few files and run MSNoise on them. To do this simply run:

$ msnoise scan_archive --path /path/to/where/files/are --init

and MSNoise will read anything ObsPy can (provided the files have a proper header (net-
work code, station code and channel code). Then, once done, simply run the “populate from
DataAvailability” (page 23) procedure.

This command can also scan folders recursively:

$ msnoise scan_archive --path /path/to/archive --recursively --init

24 Chapter 2. Workflow

MSNoise Documentation, Release 1.6

2.1.5 New Jobs

This script searches the database for files flagged “N”ew or “M”odified. For each date in
the configured range, it checks if other stations are available and defines the new jobs to be
processed. Those are inserted in the jobs table of the database.

To run it from the console:

$ msnoise new_jobs

Upon first run, if you expect the number of jobs to be large (many days, many stations), pass
the --init parameter to optimize the insert. Only use this flag once, otherwise problems will
arise from duplicate entries in the jobs table.

$ msnoise new_jobs --init

Performance / running on HPC

By setting the hpc configuration parameter to Y, you will disable the automatic creation of
jobs during the workflow, to avoid numerous interactions with the database (select & update
or insert). The jobs have then to be inserted manually:

$ msnoise new_jobs --hpc CC:STACK

should be run after the msnoise compute cc step in order to create the STACK jobs.

2.1.6 Compute Cross-Correlations

This code is responsible for the computation of the cross-correlation functions.

This script will group jobs marked “T”odo in the database by day and process them using
the following scheme. As soon as one day is selected, the corresponding jobs are marked “I”n
Progress in the database. This allows running several instances of this script in parallel.

As of MSNoise 1.6, the compute step has been completely rewritten:

• The compute cc step has been completely rewritten to make use of 2D arrays holding the
data, processing them “in place” for the different steps (FFT, whitening, etc). This results
in much more efficient computation. The process slides on time windows and computes
the correlations using indexes in a 2D array, therefore avoiding an exponential number of
identical operations on data windows.

• This new code is the default compute cc, and it doesn’t allow computing rotated com-
ponents. For users needing R or T components, there are two options: either use the
old code, now named compute cc rot, or compute the full (6 components actually are
enough) tensor using the new code, and rotate the components afterwards. From initial
tests, this latter solution is a lot faster than the first, thanks to the new processing in 2D.

• It is now possible to do the Cross-Correlation (classic “CC”), the Auto- Correla-
tion (“AC”) or the Cross-Components within the same station (“SC”). To achieve
this, we removed the ZZ, ZT, etc parameters from the configuration and replaced it
with components to compute which takes a list: e.g. ZZ,ZE,ZN,EZ,EE,EN,NZ,NE,NN
for the full non-rotated tensor between stations. Adding components to the new

2.1. Workflow 25

MSNoise Documentation, Release 1.6

components to compute single station will allow computing the cross-components
(SC) or auto-correlation (AC) of each station.

• The cross-correlation is done on sliding windows on the available data. For each window,
if one trace contains a gap, it is eliminated from the computation. This corrects previous
errors linked with gaps synchronised in time that lead to perfect sinc autocorrelation
functions. The windows should have a duration of at least “2 times the ‘maxlag‘+1” to
be computable.

Configuration Parameters

The following parameters (modifiable via `msnoise admin`) are used for this step:

• components to compute: List (comma separated) of components to compute between two
different stations [ZZ] (default=ZZ)

• components to compute single station: List (comma separated) of components within
a single station. ZZ would be the autocorrelation of Z component, while ZE or ZN are
the cross-components. Defaults to [], no single-station computations are done. (default=)
| new in 1.6

• cc sampling rate: Sampling Rate for the CrossCorrelation [20.0] (default=20.0)

• analysis duration: Duration of the Analysis (total in seconds : 3600, [86400]) (de-
fault=86400)

• overlap: Amount of overlap between data windows [0:1[[0.] (default=0.0)

• maxlag: Maximum lag (in seconds) [120.0] (default=120.)

• corr duration: Data windows to correlate (in seconds) [1800.] (default=1800.)

• windsorizing: Windsorizing at N time RMS , 0 disables windsorizing, -1 enables 1-bit
normalization [3] (default=3)

• resampling method: Resampling method Decimate/[Lanczos] (default=Lanczos)

• remove response: Remove instrument response Y/[N] (default=N)

• response format: Remove instrument file format [dataless]/inventory/paz/resp (de-
fault=dataless)

• response path: Instrument correction file(s) location (path relative to db.ini), defaults
to ‘./inventory’, i.e. a subfolder in the current project folder. | All files in that folder will
be parsed. (default=inventory)

• response prefilt: Remove instrument correction pre-filter (0.005, 0.006, 30.0, 35.0)
(default=(0.005, 0.006, 30.0, 35.0))

• preprocess lowpass: Preprocessing Low-pass value in Hz [8.0] (default=8.0)

• preprocess highpass: Preprocessing High-pass value in Hz [0.01] (default=0.01)

• preprocess max gap: Preprocessing maximum gap length that will be filled by interpo-
lation [10.0] seconds (default=10.0) | new in 1.6

• preprocess taper length: Duration of the taper applied at the beginning and end of
trace during the preprocessing, to allow highpassfiltering (default=20.0) | new in 1.6

• keep all: Keep all cross-corr (length: corr duration) [Y]/N (default=N)

26 Chapter 2. Workflow

MSNoise Documentation, Release 1.6

• keep days: Keep all daily cross-corr [Y]/N (default=Y)

• stack method: Stack Method: Linear Mean or Phase Weighted Stack: [linear]/pws (de-
fault=linear)

• pws timegate: If stack method=’pws’, width of the smoothing in seconds : 10.0 (de-
fault=10.0)

• pws power: If stack method=’pws’, Power of the Weighting: 2.0 (default=2.0)

• whitening: Whiten Traces before cross-correlation: [A]ll (except for autocorr), [N]one,
or only if [C]omponents are different: [A]/N/C (default=A) | new in 1.5

• whitening type: Type of spectral whitening function to use: [B]rutal (amplitude to
1.0), divide spectrum by its [PSD]: [B]/PSD. WARNING: only works for compute cc, not
compute cc rot, where it will always be [B] (default=B) | new in 1.6

• hpc: Is MSNoise going to run on an HPC? Y/[N] (default=N) | new in 1.6

Waveform Pre-processing

Pairs are first split and a station list is created. The database is then queried to get file paths.
For each station, all files potentially containing data for the day are opened. The traces are
then merged and split, to obtain the most continuous chunks possible. The different chunks are
then demeaned, tapered and merged again to a 1-day long trace. If a chunk is not aligned on
the sampling grid (that is, start at a integer times the sample spacing in s) , the chunk is phase-
shifted in the frequency domain. This requires tapering and fft/ifft. If the gap between two
chunks is small, compared to preprocess max gap, the gap is filled with interpolated values.
Larger gaps will not be filled with interpolated values.

Each 1-day long trace is then high-passed (at preprocess highpass Hz), then if needed, low-
passed (at preprocess lowpass Hz) and decimated/downsampled. Decimation/Downsampling
are configurable (resampling method) and users are advised testing Decimate. One advantage
of Downsampling over Decimation is that it is able to downsample the data by any factor, not
only integer factors. Downsampling is achieved with the ObsPy Lanczos resampler which we
tested against the old scikits.samplerate.

If configured, each 1-day long trace is corrected for its instrument response. Currently, only
dataless seed and inventory XML are supported.

2.1. Workflow 27

MSNoise Documentation, Release 1.6

28 Chapter 2. Workflow

MSNoise Documentation, Release 1.6

As from MSNoise 1.5, the preprocessing routine is separated from the compute cc and can be
used by plugins with their own parameters. The routine returns a Stream object containing all
the traces for all the stations/components.

Computing the Cross-Correlations

Processing using msnoise compute cc

Todo: We still need to describe the workflow in plain text, but the following graph should
help you understand how the code is structured

2.1. Workflow 29

MSNoise Documentation, Release 1.6

30 Chapter 2. Workflow

MSNoise Documentation, Release 1.6

Processing using msnoise compute cc rot

Once all traces are preprocessed, station pairs are processed sequentially. If a component
different from ZZ is to be computed, the traces are first rotated. This supposes the user has
provided the station coordinates in the station table. The rotation is computed for Radial and
Transverse components.

Then, for each corr duration window in the signal, and for each filter configured in the
database, the traces are clipped to windsorizing times the RMS (or 1-bit converted) and then
whitened in the frequency domain (see whiten) between the frequency bounds. The whitening
procedure can be skipped by setting the whitening configuration to None. The two other
whitening modes are “[A]ll except for auto-correlation” or “Only if [C]omponents are differ-

2.1. Workflow 31

MSNoise Documentation, Release 1.6

ent”. This allows skipping the whitening when, for example, computing ZZ components for very
close by stations (much closer than the wavelength sampled), leading to spatial autocorrelation
issues.

When both traces are ready, the cross-correlation function is computed (see mycorr). The
function returned contains data for time lags corresponding to maxlag in the acausal (negative
lags) and causal (positive lags) parts.

Saving Results (stacking the daily correlations)

If configured (setting keep all to ‘Y’), each corr duration CCF is saved to the hard disk in
the output folder. By default, the keep days setting is set to True and so “N = 1 day /
corr duration” CCF are stacked to produce a daily cross-correlation function, which is saved to
the hard disk in the STACKS/001 DAYS folder.

Note: Currently, the keep-all data (every CCF) are not used by next steps.

If stack method is ‘linear’, then a simple mean CCF of all windows is saved as the daily CCF.
On the other hand, if stack method is ‘pws’, then all the Phase Weighted Stack (PWS) is
computed and saved as the daily CCF. The PWS is done in two steps: first the mean coherence
between the instataneous phases of all windows is calculated, and eventually serves a weighting
factor on the mean. The smoothness of this weighting array is defined using the pws timegate

parameter in the configuration. The weighting array is the power of the mean coherence array.
If pws power is equal to 0, a linear stack is done (then it’s faster to do set stack method =
‘linear’). Usual value is 2.

Warning: PWS is largely untested, not cross-validated. It looks good, but that doesn’t
mean a lot, does it? Use with Caution! And if you cross-validate it, please let us know!!

Schimmel, M. and Paulssen H., “Noise reduction and detection of weak, coherent signals
through phase-weighted stacks”. Geophysical Journal International 130, 2 (1997): 497-505.

Once done, each job is marked “D”one in the database.

Usage

To run this script:

$ msnoise compute_cc

This step also supports parallel processing/threading:

$ msnoise -t 4 compute_cc

will start 4 instances of the code (after 1 second delay to avoid database conflicts). This works
both with SQLite and MySQL but be aware problems could occur with SQLite.

New in version 1.4: The Instrument Response removal & The Phase Weighted Stack & Parallel
Processing

32 Chapter 2. Workflow

MSNoise Documentation, Release 1.6

New in version 1.5: The Obspy Lanczos resampling method, gives similar results as the scik-
its.samplerate package, thus removing the requirement for it. This method is defined by default.

New in version 1.5: The preprocessing routine is separated from the compute cc and can be
called by external plugins.

New in version 1.6: The compute cc has been completely rewritten to be much faster, taking
advantage from 2D FFT computation and in-place array modifications. The standard com-
pute cc does process CC, AC and SC in the same code. Only if users need to compute R and/or
T components, they will have to use the slower previous code, now called compute cc rot.

2.1.7 Stack

MSNoise is capable of using a reference function defined by absolute or relative dates span.
For example, an absolute range could be “from 1 January 2010 to 31 December 2011” and
a relative range could be “the last 200 days”. In the latter case, the REF will need to be
exported at every run, meaning the following steps (MWCS and DTT) will be executed on the
whole configured period. If the REF is defined between absolute dates, excluding “today”, the
MWCS and DTT will only be calculated for new data (e.g. “yesterday” and “today”). The
corresponding configuration bits are ref begin and ref end. In the future, we plan on allowing
multiple references to be defined.

Only data for new/modified dates need to be exported. If any CC-job has been marked “Done”
within the last day and triggered the creation of STACK jobs, the stacks will be calculated
and a new MWCS job will be inserted in the database. For dates in the period of interest,
the moving-window stack will only be exported if new/modified CCF is available. The export
directory are “REF/” and “DAY%03i/” where %03i will be replaced by the number of days
stacked together (DAYS 005 for a 5-days stack, e.g.).

Please note that within MSNoise, stacks are always inclusive of the time/day mentioned. For
example, a 5-days stack on January 10, will contain cross-correlation functions computed for
January 6, 7, 8, 9 AND 10! The graphical representation centered on a “January 10” tick might
then display changes in the CCF that occurred on the 10th !

Moving-window stacks are configured using the mov stack parameter in msnoise admin.

If stack method is ‘linear’, then a simple mean CFF of all daily is saved as the mov or ref
CCF. On the other hand, if stack method is ‘pws’, then all the Phase Weighted Stack (PWS)
is computed and saved as the mov or ref CCF. The PWS is done in two steps: first the mean
coherence between the instantaneous phases of all windows is calculated, and eventually serves
a weighting factor on the mean. The smoothness of this weighting array is defined using the
pws timegate parameter in the configuration. The weighting array is the power of the mean
coherence array. If pws power is equal to 0, a linear stack is done (then it’s faster to do set
stack method = ‘linear’). Usual value is 2.

Warning: PWS is largely untested, not cross-validated. It looks good, but that doesn’t
mean a lot, does it? Use with Caution! And if you cross-validate it, please let us know!!

Schimmel, M. and Paulssen H., “Noise reduction and detection of weak, coherent signals
through phase-weighted stacks”. Geophysical Journal International 130, 2 (1997): 497-505.

2.1. Workflow 33

MSNoise Documentation, Release 1.6

Configuration Parameters

• ref begin: Beginning or REF stacks. Can be absolute (2012-01-01) or relative (-100)
days (default=1970-01-01)

• ref end: End or REF stacks. Same as ref begin (default=2021-01-01)

• mov stack: Number of days to stack for the Moving-window stacks ([5]= [day-4:day]),
can be a comma-separated list 1,2,5,10 (default=5)

• stack method: Stack Method: Linear Mean or Phase Weighted Stack: [linear]/pws (de-
fault=linear) | new in 1.4

• pws timegate: If stack method=’pws’, width of the smoothing in seconds : 10.0 (de-
fault=10.0) | new in 1.4

• pws power: If stack method=’pws’, Power of the Weighting: 2.0 (default=2.0) | new in
1.4

• hpc: Is MSNoise going to run on an HPC? Y/[N] (default=N) | new in 1.6

Once done, each job is marked “D”one in the database and, unless hpc is Y, MWCS jobs are
inserted/updated in the database.

Usage:

msnoise stack --help

Usage: [OPTIONS]

Stacks the [REF] or [MOV] windows. Computes the STACK jobs.

Options:

-r, --ref Compute the REF Stack

-m, --mov Compute the MOV Stacks

-s, --step Compute the STEP Stacks

--help Show this message and exit.

For most users, the REF stack will need to be computed only once for specific dates and then,
on routine basis, only compute the MOV stacks:

$ msnoise stack -r

$ msnoise reset STACK

$ msnoise stack -m

as for all other steps, this procedure can be run in parallel:

$ msnoise -t 4 stack -r

$ msnoise reset STACK

$ msnoise -t 4 stack -m

New in version 1.4: The Phase Weighted Stack.

New in version 1.6: The hpc parameter that can prevent the automatic creation of MWCS jobs.
The REF and MOV stacks have been separated and need to be run independently.

34 Chapter 2. Workflow

MSNoise Documentation, Release 1.6

2.1.8 Compute MWCS

Warning: if using only mov stack = 1, no MWCS jobs is inserted in the database and
consequently, no MWCS calculation will be done! FIX!

Following Clarke et al (2011), we apply the mwcs to study the relative dephasing between
Moving-Window stacks (“Current”) and a Reference using Moving-Window Cross-Spectral anal-
ysis. The jobs “T”o do have been inserted in the datavase during the stack procedure.

Filter Configuration Parameters

• mwcs low: The lower frequency bound of the linear regression done in MWCS (in Hz)

• mwcs high: The upper frequency bound of the linear regression done in MWCS (in Hz)

• mwcs wlen: Window length (in seconds) to perform MWCS

• mwcs step: Step (in seconds) of the windowing procedure in MWCS

• hpc: Is MSNoise going to run on an HPC? Y/[N] (default=N) | new in 1.6

In short, both time series are sliced in several overlapping windows and preprocessed. The
similarity of the two time-series is assessed using the cross-coherence between energy densities
in the frequency domain. The time delay between the two cross correlations is found in the
unwrapped phase of the cross spectrum and is linearly proportional to frequency. This “Delay”
for each window between two signals is the slope of a weighted linear regression (WLS) of the
samples within the frequency band of interest.

For each filter, the frequency band can be configured using mwcs low and mwcs high, and the
window and overlap lengths using mwcs wlen and mwcs step.

The output of this process is a table of delays measured at each window in the functions. The
following is an example for lag times between -115 and -90. In this case, the window length was
10 seconds with an overlap of 5 seconds.

LAG_TIME DELAY ERROR MEAN COHERENCE

-1.1500000000e+02 -1.4781146383e-01 5.3727119135e-02 2.7585243911e-01

-1.1000000000e+02 -6.8207526992e-02 2.0546644311e-02 3.1620999352e-01

-1.0500000000e+02 -1.0337029577e-01 8.6645155402e-03 4.2439269880e-01

-1.0000000000e+02 -2.8668775696e-02 6.2522215988e-03 5.7159849528e-01

-9.5000000000e+01 4.1803941008e-02 1.5102285789e-02 4.1238557789e-01

-9.0000000000e+01 4.8139400233e-02 3.2700657018e-02 3.0586187792e-01

This process is job-based, so it is possible to run several instances in parallel.

Once done, each job is marked “D”one in the database and, unless hpc is Y, DTT jobs are
inserted/updated in the database.

To run this step:

$ msnoise compute_mwcs

This step also supports parallel processing/threading:

2.1. Workflow 35

MSNoise Documentation, Release 1.6

$ msnoise -t 4 compute_mwcs

will start 4 instances of the code (after 1 second delay to avoid database conflicts). This works
both with SQLite and MySQL but be aware problems could occur with SQLite.

New in version 1.4: Parallel Processing

2.1.9 Compute dt/t

This code is responsible for the calculation of dt/t using the result of the MWCS calculations.

Configuration Parameters

• dtt lag: How is the lag window defined [dynamic]/static (default=static)

• dtt v: If dtt lag=dynamic: what velocity to use to avoid ballistic waves [1.0]km/s (de-
fault=1.0)

• dtt minlag: If dtt lag=static: min lag time (default=5.0)

• dtt width: Width of the time lag window [30]s (default=30.0)

• dtt sides: Which sides to use [both]/left/right (default=both)

• dtt mincoh: Minimum coherence on dt measurement, MWCS points with values lower
than that will not be used in the WLS (default=0.65)

• dtt maxerr: Maximum error on dt measurement, MWCS points with values larger than
that will not be used in the WLS (default=0.1)

• dtt maxdt: Maximum dt values, MWCS points with values larger than that will not be
used in the WLS (default=0.1)

The dt/t is determined as the slope of the delays vs time lags. The slope is calculated a weighted
linear regression (WLS) through selected points.

1. The selection of points is first based on the time lag criteria. The minimum time lag can
either be defined absolutely or dynamically. When dtt lag is set to “dynamic” in the database,
the inter-station distance is used to determine the minimum time lag. This lag is calculated
from the distance and a velocity configured (dtt v). The velocity is determined by the user so
that the minlag doesn’t include the ballistic waves. For example, if ballistic waves are visible
with a velocity of 2 km/s, one could configure dtt v=1.0. This way, if stations are located 15
km apart, the minimum lag time will be set to 15 s. The dtt width determines the width of
the lag window used. A value of 30.0 means the process will use time lags between 15 and
45 s in the example above, on both sides if configured (dtt sides), or only causal or acausal
parts of the CCF. The following figure shows the static time lags of dtt width = 40s starting
at dtt minlag = 10s and the dynamic time lags for a dtt v = 1.0 km/s for the Piton de La
Fournaise network (including stations not on the volcano),

Note: It seems obvious that these parameters are frequency-dependent, but they are currently
common for all filters !

36 Chapter 2. Workflow

MSNoise Documentation, Release 1.6

Warning: In order to use the dynamic time lags, one has to provide the station coordinates

2.1. Workflow 37

MSNoise Documentation, Release 1.6

!

2. Using example values above, we chose to use only 15-45 s coda part of the signal, neglecting
direct waves in the 0-15 seconds range. We then select data which match three other thresholds:
dtt mincoh, dtt maxerr and dtt maxdt.

Each of the 4 left subplot of this figure shows a colormapper matrix of which each row corre-
sponds to the data of 1 station pair and each column corresponds to different time lags. The
cells are then colored using, from left to right: Delays, Errors, Phase Coherence and Data
Selection.

Once data (cells) have been selected, they are analyzed two times: first using a WLS that is
forced to pass the origin (0,0) and second when a constant is added to allow for the WLS to
be offset from the origin. For each value, the error is computed and stored. M0 and EM0 are
the slope and its error for the first WLS, and M, EM together with A and EA are the slope, its
error, the constant and its error for the second WLS. The output of this calculation is a table,
with one row for each station pair.

Date, A, EA, EM, EM0, M, M0, Pairs

2013-01-06,-0.1683728,0.0526606,0.00208377,0.00096521, 0.00682021, 0.00037757,BE_GES_

→˓BE_HOU

2013-01-06,-0.0080464,0.0577936,0.00291327,0.00097298,-0.00226910,-0.00264354,BE_GES_

→˓BE_MEM

2013-01-06, 0.1007472,0.0144648,0.00179566,0.00454172,-0.00145738, 0.00741478,BE_GES_

→˓BE_RCHB

2013-01-06,-0.0556811,0.0098926,0.00057839,0.00108102,-0.00328965,-0.00136075,BE_GES_

→˓BE_SKQ

2013-01-06, 0.0150866,0.0202243,0.00096543,0.00089832, 0.00083714, 0.00104507,BE_GES_

→˓BE_STI

2013-01-06, 0.0268309,0.0328997,0.00153137,0.00150261, 0.00302331, 0.00302451,BE_GES_

→˓BE_UCC

2013-01-06,-0.0121293,0.0043351,0.00039019,0.00041347, 0.00025836,-0.00042709,BE_HOU_

→˓BE_MEM

2013-01-06, 0.1076247,0.0188662,0.00076824,0.00216383,-0.00030791, 0.00112692,BE_HOU_

→˓BE_RCHB

2013-01-06,-0.0468485,0.0194492,0.00069968,0.00078207,-0.00066133, 0.00027102,BE_HOU_

→˓BE_SKQ

2013-01-06, 0.0203057,0.0161316,0.00131522,0.00131182, 0.00051626,-3.10306611,BE_HOU_

→˓BE_STI

...

2013-01-06,-0.0022588,0.0037141,0.00010340,9.1996e-05, 0.00073635, 0.00076238,ALL

To run this script:

38 Chapter 2. Workflow

MSNoise Documentation, Release 1.6

msnoise compute_dtt

Grouping Station Pairs

Although not clearly visible on the figure above, the very last row of the matrix doesn’t contain
information about one station pair, but contains a weighted mean of all delays (from all pairs)
for each time lag. For each time lag, delays from each pair is taken into account if it satisfies
the same criteria as for the individual data selection. Once the last row (the ALL line) has been
calculated, it goes through the normal process of the double WLS and is saved to the output
file, as visible above. In the future, MSNoise will be able to treat as many groups as the user
want, allowing, e.g. a “crater” and a “slopes” groups.

Forcing vs No Forcing through Origin

The reason for allowing the WLS to cross the axis elsewhere than on (0,0) is, for example, to
study the potential clock drifts or noise source position variations. By default, the msnoise

plot dvv plot shows the results of the `Not Forced WLS.

Mean of All Pairs vs Mean Pair

Warning: the ALL pair is still calculated and output in the DTT files, but its output is no
longer displayed on the graphs. new in 1.6.

The dt/t calculated using the mean pair (ALL, in red on subplots 4 and 5) and by calculating
the weighted mean of the dt/t of all pairs (in green) don’t show a significant difference. The
standard deviation around the latter is more spread than on the former, but this has to be
investigated.

2.1. Workflow 39

MSNoise Documentation, Release 1.6

40 Chapter 2. Workflow

CHAPTER

THREE

PLOTTING

3.1 Plotting

MSNoise comes with some default plotting tools.

All plotting commands accept the --outfile argument. If provided, the figure will be saved to
the disk. Names can be explicit, or tell the code to generate the filename automatically (using
the ? question mark), for example:

automatic naming, save to PNG

msnoise plot dvv -o ?.png

automatic naming, save to PDF

msnoise plot dvv -o ?.pdf

explicit naming, save to JPG

msnoise plot dvv -o mydvv.jpg

• Customizing Plots (page 41)

• Data Availability Plot (page 42)

• Station Map (page 43)

• Interferogram Plot (page 43)

• CCF vs Time (page 44)

• CCF’s spectrum vs Time (page 47)

• MWCS Plot (page 50)

• Distance Plot (page 51)

• dv/v Plot (page 52)

• dt/t Plot (page 53)

3.1.1 Customizing Plots

All plots commands can be overridden using a -c argument in front of the plot command !!

Examples:

41

MSNoise Documentation, Release 1.6

• msnoise -c plot distance

• msnoise -c plot ccftime YA.UV02 YA.UV06 -m 5

• etc.

To make this work, one has to copy the plot script from the msnoise install directory to the
project directory (where your db.ini file is located, then edit it to one’s desires. The first thing
to edit in the code is the import of the MSNoise API (page 66):

from ..api import *

to

from msnoise.api import *

and it should work.

New in version 1.4.

3.1.2 Data Availability Plot

Plots the data availability, as contained in the database. Every day which has a least some data
will be coloured in red. Days with no data remain blank.

msnoise plot data_availability --help

Usage: [OPTIONS]

Plots the Data Availability vs time

Options:

-s, --show BOOLEAN Show interactively?

-o, --outfile TEXT Output filename (?=auto)

--help Show this message and exit.

Example:

msnoise plot data availability :

42 Chapter 3. Plotting

MSNoise Documentation, Release 1.6

3.1.3 Station Map

3.1.4 Interferogram Plot

This plot shows the cross-correlation functions (CCF) vs time in a very similar manner as on
the ccftime plot above, but shows an image instead of wiggles. The parameters allow to plot the
daily or the mov-stacked CCF. Filters and components are selectable too. Passing --refilter

allows to bandpass filter CCFs before plotting (new in 1.5).

msnoise plot interferogram --help

Usage: [OPTIONS] STA1 STA2 [EXTRA_ARGS]...

Plots the interferogram between sta1 and sta2 (parses the CCFs)

STA1 and STA2 must be provided with this format: NET.STA !

Options:

-f, --filterid INTEGER Filter ID

-c, --comp TEXT Components (ZZ, ZR,...)

-m, --mov_stack INTEGER Mov Stack to read from disk

-s, --show BOOLEAN Show interactively?

-o, --outfile TEXT Output filename (?=auto)

-r, --refilter TEXT Refilter CCFs before plotting (e.g. 4:8 for

filtering CCFs between 4.0 and 8.0 Hz. This will

(continues on next page)

3.1. Plotting 43

MSNoise Documentation, Release 1.6

(continued from previous page)

update the plot title.

--help Show this message and exit.

Example:

msnoise plot interferogram YA.UV06 YA.UV11 -m5 will plot the ZZ component (default),
filter 1 (default) and mov stack 5:

3.1.5 CCF vs Time

This plot shows the cross-correlation functions (CCF) vs time. The parameters allow to plot
the daily or the mov-stacked CCF. Filters and components are selectable too. The --ampli

argument allows to increase the vertical scale of the CCFs. The --seismic shows the up-going
wiggles with a black-filled background (very heavy !). Passing --refilter allows to bandpass
filter CCFs before plotting (new in 1.5).

msnoise plot ccftime --help

Usage: [OPTIONS] STA1 STA2 [EXTRA_ARGS]...

Plots the ccf vs time between sta1 and sta2

STA1 and STA2 must be provided with this format: NET.STA !

Options:

(continues on next page)

44 Chapter 3. Plotting

MSNoise Documentation, Release 1.6

(continued from previous page)

-f, --filterid INTEGER Filter ID

-c, --comp TEXT Components (ZZ, ZR,...)

-m, --mov_stack INTEGER Mov Stack to read from disk

-a, --ampli FLOAT Amplification

-S, --seismic Seismic style

-s, --show BOOLEAN Show interactively?

-o, --outfile TEXT Output filename (?=auto)

-e, --envelope Plot envelope instead of time series

-r, --refilter TEXT Refilter CCFs before plotting (e.g. 4:8 for

filtering CCFs between 4.0 and 8.0 Hz. This will

update the plot title.

--normalize TEXT

--help Show this message and exit.

Example:

msnoise plot ccftime YA.UV06 YA.UV11 will plot all defaults:

For zooming in the CCFs:

msnoise plot ccftime YA.UV05 YA.UV11 --xlim=-10,10 --ampli=15:

3.1. Plotting 45

MSNoise Documentation, Release 1.6

It is sometimes useful to refilter the CCFs on the fly:

msnoise plot ccftime YA.UV05 YA.UV11 -r 0.5:1.0:

46 Chapter 3. Plotting

MSNoise Documentation, Release 1.6

3.1.6 CCF’s spectrum vs Time

This plot shows the cross-correlation functions’ spectrum vs time. The parameters allow to plot
the daily or the mov-stacked CCF. Filters and components are selectable too. The --ampli

argument allows to increase the vertical scale of the CCFs. Passing --refilter allows to band-
pass filter CCFs before computing the FFT and plotting. Passing --startdate and --enddate

parameters allows to specify which period of data should be plotted. By default the plot uses
dates determined in database.

msnoise plot spectime --help

Usage: [OPTIONS] STA1 STA2 [EXTRA_ARGS]...

Plots the ccf's spectrum vs time between sta1 and sta2

STA1 and STA2 must be provided with this format: NET.STA !

Options:

-f, --filterid INTEGER Filter ID

-c, --comp TEXT Components (ZZ, ZR,...)

-m, --mov_stack INTEGER Mov Stack to read from disk

-a, --ampli FLOAT Amplification

-s, --show BOOLEAN Show interactively?

-o, --outfile TEXT Output filename (?=auto)

-r, --refilter TEXT Refilter CCFs before plotting (e.g. 4:8 for

filtering CCFs between 4.0 and 8.0 Hz. This will

(continues on next page)

3.1. Plotting 47

MSNoise Documentation, Release 1.6

(continued from previous page)

update the plot title.

--help Show this message and exit.

Example:

msnoise plot spectime YA.UV05 YA.UV11 will plot all defaults:

Zooming in the X-axis and playing with the amplitude:

msnoise plot spectime YA.UV05 YA.UV11 --xlim=0.08,1.1 --ampli=10:

48 Chapter 3. Plotting

MSNoise Documentation, Release 1.6

And refiltering to enhance high frequency content:

msnoise plot spectime YA.UV05 YA.UV11 --xlim=0.5,1.1 --ampli=10 -r0.7:1.0:

3.1. Plotting 49

MSNoise Documentation, Release 1.6

3.1.7 MWCS Plot

This plot shows the result of the MWCS calculations in two superposed images. One is the dt
calculated vs time lag and the other one is the coherence. The image is constructed by horizon-
tally stacking the MWCS of different days. The two right panels show the mean and standard
deviation per time lag of the whole image. The selected time lags for the dt/t calculation are
presented with green horizontal lines, and the minimum coherence or the maximum dt are in
red.

The filterid, comp and mov stack allow filtering the data used.

msnoise plot mwcs --help

Usage: [OPTIONS] STA1 STA2

Plots the mwcs results between sta1 and sta2 (parses the CCFs)

STA1 and STA2 must be provided with this format: NET.STA !

Options:

-f, --filterid INTEGER Filter ID

-c, --comp TEXT Components (ZZ, ZR,...)

-m, --mov_stack INTEGER Mov Stack to read from disk

-s, --show BOOLEAN Show interactively?

-o, --outfile TEXT Output filename (?=auto)

--help Show this message and exit.

50 Chapter 3. Plotting

MSNoise Documentation, Release 1.6

Example:

msnoise plot mwcs ID.KWUI ID.POSI -m 3 will plot all defaults with the mov stack = 3:

3.1.8 Distance Plot

Plots the REF stacks vs interstation distance. This could help deciding which parameters to
use in the dt/t calculation step. Passing --refilter allows to bandpass filter CCFs before
plotting (new in 1.5). It is also possible to only draw CCFs for pairs including one station by
passing --virtual-pair followed by the desired NET.STA (new in 1.5).

msnoise plot distance --help

Usage: [OPTIONS] [EXTRA_ARGS]...

Plots the REFs of all pairs vs distance

Options:

-f, --filterid INTEGER Filter ID

-c, --comp TEXT Components (ZZ, ZR,...)

-a, --ampli FLOAT Amplification

-s, --show BOOLEAN Show interactively?

-o, --outfile TEXT Output filename (?=auto)

-r, --refilter TEXT Refilter CCFs before plotting (e.g. 4:8 for

filtering CCFs between 4.0 and 8.0 Hz. This will

update the plot title.

--virtual-source TEXT Use only pairs including this station. Format must

(continues on next page)

3.1. Plotting 51

MSNoise Documentation, Release 1.6

(continued from previous page)

be NET.STA

--help Show this message and exit.

Example:

msnoise plot distance will plot all defaults:

3.1.9 dv/v Plot

This plot shows the final output of MSNoise.

msnoise plot dvv --help

Usage: [OPTIONS]

Plots the dv/v (parses the dt/t results)

Individual pairs can be plotted extra using the -p flag one or more times.

Example: msnoise plot dvv -p ID_KWUI_ID_POSI

Example: msnoise plot dvv -p ID_KWUI_ID_POSI -p ID_KWUI_ID_TRWI

Remember to order stations alphabetically !

Options:

-f, --filterid INTEGER Filter ID

-c, --comp TEXT Components (ZZ, ZR,...)

(continues on next page)

52 Chapter 3. Plotting

MSNoise Documentation, Release 1.6

(continued from previous page)

-m, --mov_stack INTEGER Plot specific mov stacks

-p, --pair TEXT Plot a specific pair

-A, --all Show the ALL line?

-M, --dttname TEXT Plot M or M0?

-s, --show BOOLEAN Show interactively?

-o, --outfile TEXT Output filename (?=auto)

--help Show this message and exit.

Example:

msnoise plot dvv will plot all defaults:

3.1.10 dt/t Plot

This plots dt (delay time) against t (time lag). It shows the results from the MWCS step, plus
the calculated regression lines M0 and M. The errors in the regression lines are also plotted as
fainter lines. The time lags used to calculate the regression are shown in blue.

msnoise plot dtt --help

Usage: [OPTIONS] STA1 STA2 DAY

Plots a graph of dt against t

STA1 and STA2 must be provided with this format: NET.STA !

(continues on next page)

3.1. Plotting 53

MSNoise Documentation, Release 1.6

(continued from previous page)

DAY must be provided in the ISO format: YYYY-MM-DD

Options:

-f, --filterid INTEGER Filter ID

-c, --comp TEXT Components (ZZ, ZR,...)

-m, --mov_stack INTEGER Mov Stack to read from disk

-s, --show BOOLEAN Show interactively?

-o, --outfile TEXT Output filename (?=auto)

--help Show this message and exit.

Example

msnoise plot dtt Z7.HRIM Z7.LIND 2014-08-10 -f 14 -m 20 will plot:

New in version 1.4: (Thanks to C.G. Donaldson)

54 Chapter 3. Plotting

CHAPTER

FOUR

INTERACTING WITH MSNOISE

4.1 How To’s

4.1.1 Run the simplest MSNoise run ever

This recipe is a kind of “let’s check this data rapidly”:

msnoise db init --tech 1

msnoise config set startdate=2019-01-01

msnoise config set enddate=2019-02-01

msnoise config set overlap=0.5

msnoise config set mov_stack=1,5,10

msnoise scan_archive --path /path/to/archive --recursively

msnoise populate --fromDA

msnoise new_jobs --init

msnoise admin # add 1 filter in the Filter table

or

msnoise db execute "insert into filters (ref, low, mwcs_low, high, mwcs_high, rms_

→˓threshold, mwcs_wlen, mwcs_step, used) values (1, 0.1, 0.1, 1.0, 1.0, 0.0, 12.0, 4.

→˓0, 1)"

msnoise compute_cc

msnoise stack -r

msnoise reset STACK

msnoise stack -m

msnoise compute_mwcs

msnoise compute_dtt

msnoise plot dvv

4.1.2 Run MSNoise using lots of cores on a HPC

Avoid Database I/O by using the hpc flag

With MSNoise 1.6, most of the API calls have been cleaned from calling the database, for
example the def stack() called a SELECT on the database for each call, which is useless as
configuration parameters are not supposed to change during the execution of the code. This
modification allows running MSNoise on an HPC infrastructure with a remote central MySQL
database.

55

MSNoise Documentation, Release 1.6

The new configuration parameter hpc is used for flagging if MSNoise is running High Perfor-
mance. If True, the jobs processed at each step are marked Done when finished, but the next
jobtype according to the workflow is not created. This removes a lot of select/update/insert
actions on the database and makes the whole much faster (one INSERT instead of tons of
SELECT/UPDATE/INSERT).

Commands and actions with hpc = N :

• msnoise new jobs: creates the CC jobs

• msnoise compute cc: processes the CC jobs and creates the STACK jobs

• msnoise stack -m: processes the STACK jobs and creates the MWCS jobs

• etc. . .

Commands and actions with hpc = Y :

• msnoise new jobs: creates the CC jobs

• msnoise compute cc: processes the CC jobs

• msnoise new jobs --hpc CC:STACK: creates the STACK jobs based on the CC jobs
marked “D”one

• msnoise stack -m: processes the STACK jobs

• msnoise new jobs --hpc STACK:MWCS: creates the MWCS jobs based on the STACK
jobs marked “D”one

• etc. . .

Set up the HPC

To avoid having to rewrite MSNoise for using techniques relying on MPI or other parallel
computing tools, I decided to go “simple”, and this actually works. The only limitation of the
following is that you need to have a strong MySQL server machine that accepts hundreds or
thousands of connections. In my case, the MySQL server is running on a computing blade, and
its my.cnf is configured to allow 1000 users/connections, and to listen on all its IPs.

The easiest set up (maybe not your sysadmin’s preferred, please check), is to

• install miniconda on your home directory and make miniconda’s python executable your
default python (I add the paths to .profile).

• Then install the requirements and finally MSNoise.

• As usual, create a project folder and msnoise db init there, choose MySQL and provide
the hostname of the machine running the MySQL server.

At that point, your project is ready. I usually request an interactive node on the HPC for
doing the msnoise populate and `msnoise scan archive. Our jobs scheduler is PBS, so this
command

qsub -I -l walltime=02:00:00 -l select=1:ncpus=16:mem=1g

requests an Interactive node with 16 cpus, 1GB ram, for 2 hours. Once connected, check that
the python version is correct (or source .profile again). Because we requested 16 cores, we can
msnoise -t 16 scan archive --init.

56 Chapter 4. Interacting with MSNoise

MSNoise Documentation, Release 1.6

Depending on the server configuration, you can maybe run the msnoise admin on the login
node, and access it via its hostname:5000 in your browser. If not, the easiest way to set up
the config is running msnoise config set <parameter>=<value> from the console. To add
filters, do it either:

• in the Admin

• using MySQL workbench connected to your MySQL server

• using such commands msnoise db execute "insert into filters (ref, low,

mwcs low, high, mwcs high, rms threshold, mwcs wlen, mwcs step, used)

values (1, 0.1, 0.1, 1.0, 1.0, 0.0, 12.0, 4.0, 1)"

• using msnoise db dump, edit the filter table in CSV format, then msnoise db import

filters --force

Once done, the project is set up and should run. Again, test if all goes OK in an interactive
node.

To run on N cores in parallel, we have the advantage that, e.g. for CC jobs, the day-jobs are
independent. We can thus request an “Array” of single cores, which is usually quite easy to get
on HPCs (most users run heavily parallel codes and request large number of “connected” cores,
while we can run “shared”).

The job file in my PBS case looks like this for computing the CC:

#!/bin/bash

#PBS -N MSNoise_PDF_CC

#PBS -l walltime=01:00:00

#PBS -l select=1:ncpus=1:mem=1g

#PBS -l place=shared

#PBS -J 1-400

cd /scratch-a/thomas/2019_PDF

source /space/hpc-home/thomas/.profile

msnoise compute_cc2

This requests 400 cores with 1GB of RAM. The content of my .profile file contains:

added by Miniconda3 installer

export PATH="/home/thomas/miniconda3/bin:$PATH"

export MPLBACKEND="Agg"

The last line is important as nodes are usually “head-less” and matplotlib and packages relating
to it would fail if they expect a gui-capable system.

For submitting this job, run qsub qc.job. The process usually routes stdout and stderr to files
in the current directory, make sure to check them if jobs seem to have failed. If all goes well,
calling msnoise info -j repeatedly from the login or interactive node’s console should show
the evolution of Todo, In Progress and Done jobs.

Note: HPC experts are welcome to suggest, comment, etc. . . It’s a quick’n’dirty solution,
but it works for me!

4.1. How To’s 57

MSNoise Documentation, Release 1.6

4.1.3 Reprocess data

When starting to use MSNoise, one will most probably need to re-run different parts of the
Workflow more than one time. By default, MSNoise is designed to only process “what’s new”,
which is antagonistic to what is wanted. Hereafter, we present cases that will cover most of the
re-run techniques:

When adding a new filter

If new filter are added to the filters list in the Configurator, one has to reprocess all CC jobs,
but not for filters already existing. The recipe is:

• Add a new filter, be sure to mark ‘used’=1

• Set all other filters ‘used’ value to 0

• Redefine the flag of the CC jobs, from ‘D’one to ‘T’odo with the following:

• Run msnoise reset CC --all

• Run msnoise compute cc

• Run next commands if needed (stack, mwcs, dtt)

• Set back the other filters ‘used’ value to 1

The compute cc will only compute the CC’s for the new filter(s) and output the results in the
STACKS/ folder, in a sub-folder named by a formatted integer from the filter ID. For example:
STACKS/01 for ‘filter id’=1, STACKS/02 for ‘filter id’=2, etc.

When changing the REF

When changing the REF (ref begin and ref end), the REF stack has to be re-computed:

msnoise reset STACK --all

msnoise stack -r

The REF will then be re-output, and you probably should reset the MWCS jobs to recompute
daily correlations against this new ref:

msnoise reset MWCS --all

msnoise compute_mwcs

When changing the MWCS parameters

If the MWCS parameters are changed in the database, all MWCS jobs need to be reprocessed:

msnoise reset MWCS --all

msnoise compute_mwcs

shoud do the trick.

58 Chapter 4. Interacting with MSNoise

MSNoise Documentation, Release 1.6

When changing the dt/t parameters

msnoise reset DTT --all

msnoise compute_dtt

Recompute only the specific days

You want to recompute CC jobs after a certain date only, for whatever reason:

msnoise reset CC --rule="day>='2019-01-01'"

SQL experts can also use the msnoise db execute command (with caution!):

msnoise db execute "update jobs set flag='T' where jobtype='CC' and day>='2019-01-01'"

If you want to only reprocess one day:

msnoise reset CC --rule="day='2019-01-15'"

4.1.4 Define one’s own data structure of the waveform archive

The data structure.py file contains the known data archive formats. If another data format
needs to be defined, it will be done in the custom.py file in the current project folder:

See also:

Check the “Populate Station Table” step in the Populate Station Table (page 23).

4.1.5 How to have MSNoise work with 2+ data structures at the same time

In this case, the easiest solution is to scan the archive(s) with the “Lazy Mode”:

msnoise scan_archive --path /path/to/archive1/ --recursively

msnoise scan_archive --path /path/to/archive2/ --recursively

etc.

Remember to either manually fill in the station table, or

msnoise populate --fromDA

4.1.6 How to duplicate/dump the MSNoise configuration

To export all tables of the current database, run

msnoise db dump

This will create as many CSV files as there are tables in the database.

Then, on a new location, init a new msnoise project and import the tables one by one:

4.1. How To’s 59

MSNoise Documentation, Release 1.6

msnoise db init

msnoise db import config --force

msnoise db import stations --force

msnoise db import filters --force

msnoise db import data_availability --force

msnoise db import jobs --force

4.1.7 Testing the Dependencies

Once installed, you should be able to import the python packages in a python console. MSNoise
comes with a little script called bugreport.py that can be useful to check if you have all the
required packages (+ some extras).

The usage is such:

$ msnoise bugreport -h

usage: msnoise bugreport [-h] [-s] [-m] [-e] [-a]

Helps determining what didn\'t work

optional arguments:

-h, --help show this help message and exit

-s, --sys Outputs System info

-m, --modules Outputs Python Modules Presence/Version

-e, --env Outputs System Environment Variables

-a, --all Outputs all of the above

On my Windows machine, the execution of

$ msnoise bugreport -s -m

results in:

************* Computer Report *************

----------------+SYSTEM+-------------------

Windows

PC1577-as

10

10.0.17134

AMD64

Intel64 Family 6 Model 158 Stepping 9, GenuineIntel

----------------+PYTHON+-------------------

Python:3.7.3 | packaged by conda-forge | (default, Jul 1 2019, 22:01:29) [MSC v.1900

→˓64 bit (AMD64)]

This script is at d:\pythonforsource\msnoise_stack\msnoise\msnoise\bugreport.py

---------------+MODULES+-------------------

Required:

[X] setuptools: 41.2.0

[X] numpy: 1.15.4

(continues on next page)

60 Chapter 4. Interacting with MSNoise

MSNoise Documentation, Release 1.6

(continued from previous page)

[X] scipy: 1.3.0

[X] pandas: 0.25.0

[X] matplotlib: 3.1.1

[X] sqlalchemy: 1.3.8

[X] obspy: 1.1.0

[X] click: 7.0

[X] pymysql: 0.9.3

[X] flask: 1.1.1

[X] flask_admin: 1.5.3

[X] markdown: 3.1.1

[X] wtforms: 2.2.1

[X] folium: 0.10.0

[X] jinja2: 2.10.1

Only necessary if you plan to build the doc locally:

[X] sphinx: 2.2.0

[X] sphinx_bootstrap_theme: 0.7.1

Graphical Backends: (at least one is required)

[] wx: not found

[] pyqt: not found

[] PyQt4: not found

[X] PyQt5: present (no version)

[] PySide: not found

Not required, just checking:

[X] json: 2.0.9

[X] psutil: 5.6.3

[] reportlab: not found

[] configobj: not found

[X] pkg_resources: present (no version)

[] paramiko: not found

[X] ctypes: 1.1.0

[X] pyparsing: 2.4.2

[X] distutils: 3.7.3

[X] IPython: 7.7.0

[] vtk: not found

[] enable: not found

[] traitsui: not found

[] traits: not found

[] scikits.samplerate: not found

The [X] marks the presence of the module. In the case above, PyQt4 is missing, but that’s not
a problem because PyQt5 is present. The “not-required” packages are checked for information,
those packages can be useful for reporting / hacking / rendering the data.

4.2 Interaction Examples & Gallery

The following examples are meant to show you how to interact with MSNoise using its API,
thus avoiding having to dive into the folder structure.

Users should try examples while checking the MSNoise API (page 66). (application program-
ming interface) for understanding the calls to different functions.

4.2. Interaction Examples & Gallery 61

MSNoise Documentation, Release 1.6

In a nutshell, all examples start with the following Python code:

from msnoise.api import db

db = connect()

This, if run in an MSNoise project folder (= a folder where you have already run msnoise db

init), will provide a Session object, connected to the database.

Note: Click here (page 63) to download the full example code

4.2.1 Plot a Reference CCF

The following two lines are only needed for building this documentation

Delete them and run the code in your project folder.

import os

if "SPHINX_DOC_BUILD" in os.environ:

os.chdir(r"C:\tmp\msnoise_doc_project")

import matplotlib

matplotlib.use("agg")

import matplotlib.pyplot as plt

import numpy as np

(continues on next page)

62 Chapter 4. Interacting with MSNoise

MSNoise Documentation, Release 1.6

(continued from previous page)

import pandas as pd

from pandas.plotting import register_matplotlib_converters

register_matplotlib_converters()

plt.style.use("ggplot")

from msnoise.api import connect, get_results, build_movstack_datelist, get_params,

→˓get_t_axis

connect to the database

db = connect()

Obtain a list of dates between ``start_date`` and ``enddate``

start, end, datelist = build_movstack_datelist(db)

Get the list of parameters from the DB:

params = get_params(db)

Get the time axis for plotting the CCF:

taxis = get_t_axis(db)

Get the results for two station, filter id=1, ZZ component, mov_stack=1 and stack

→˓the results:

n, ccf = get_results(db, "YA_UV05", "YA_UV12", 1, "ZZ", datelist, 1, format="stack",

→˓params=params)

plt.figure()

plt.plot(taxis, ccf)

plt.title("Reference Function")

plt.xlabel("Lag Time (s)")

plt.ylabel("Amplitude")

#EOF

Total running time of the script: (0 minutes 0.926 seconds)

Note: Click here (page 66) to download the full example code

4.2.2 Plot an interferogram

import os

if "SPHINX_DOC_BUILD" in os.environ:

os.chdir(r"C:\tmp\msnoise_doc_project")

import matplotlib

matplotlib.use("agg")

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

(continues on next page)

4.2. Interaction Examples & Gallery 63

MSNoise Documentation, Release 1.6

(continued from previous page)

from pandas.plotting import register_matplotlib_converters

register_matplotlib_converters()

plt.style.use("ggplot")

from msnoise.api import connect, get_results, build_movstack_datelist, get_params,

→˓get_t_axis

connect to the database

db = connect()

Obtain a list of dates between ``start_date`` and ``enddate``

start, end, datelist = build_movstack_datelist(db)

Get the list of parameters from the DB:

params = get_params(db)

Get the time axis for plotting the CCF:

taxis = get_t_axis(db)

Get the results for two station, filter id=1, ZZ component, mov_stack=1 and the

→˓results as a 2D array:

n, ccfs = get_results(db, "YA_UV05", "YA_UV12", 1, "ZZ", datelist, 1, format="matrix",

→˓ params=params)

Convert to a pandas DataFrame object for convenience, and drop empty rows:

df = pd.DataFrame(ccfs, index=pd.DatetimeIndex(datelist), columns=taxis)

df = df.dropna()

Define the 99% percentile of the data, for visualisation purposes:

clim = df.mean(axis="index").quantile(0.99)

fig, ax = plt.subplots()

plt.pcolormesh(df.columns, df.index.to_pydatetime(), df.values,

vmin=-clim, vmax=clim, rasterized=True)

plt.colorbar()

plt.title("Interferogram")

plt.xlabel("Lag Time (s)")

plt.ylim(df.index[0],df.index[-1])

plt.xlim(df.columns[0], df.columns[-1])

plt.subplots_adjust(left=0.15)

64 Chapter 4. Interacting with MSNoise

MSNoise Documentation, Release 1.6

Running a simple moving window average can be done with pandas’s functions:

smooth = df.rolling(5).mean()

fig, ax = plt.subplots()

plt.pcolormesh(smooth.columns, smooth.index.to_pydatetime(), smooth.values,

vmin=-clim, vmax=clim, rasterized=True)

plt.colorbar()

plt.title("Interferogram (smoothed over 5 days)")

plt.xlabel("Lag Time (s)")

plt.ylim(smooth.index[0],smooth.index[-1])

plt.xlim(smooth.columns[0], smooth.columns[-1])

plt.subplots_adjust(left=0.15)

plt.show()

#EOF

4.2. Interaction Examples & Gallery 65

MSNoise Documentation, Release 1.6

Out:

D:\PythonForSource\MSNoise_Stack\MSNoise\examples\plot_interferogram.py:75:

→˓UserWarning: Matplotlib is currently using agg, which is a non-GUI backend, so

→˓cannot show the figure.

plt.show()

Total running time of the script: (0 minutes 1.870 seconds)

4.3 MSNoise API

msnoise.api.get logger(name, loglevel=None, with pid=False)
Returns the current configured logger or configure a new one.

msnoise.api.get engine(inifile=None)
Returns the a SQLAlchemy Engine

Parameters inifile (str) – The path to the db.ini file to use. Defaults to
os.cwd() + db.ini

Return type sqlalchemy.engine.Engine

Returns An Engine Object

msnoise.api.connect(inifile=None)
Establishes a connection to the database and returns a Session object.

66 Chapter 4. Interacting with MSNoise

https://docs.python.org/2.7/library/functions.html#str
https://docs.sqlalchemy.org/en/13/core/connections.html#sqlalchemy.engine.Engine
https://docs.sqlalchemy.org/en/13/core/connections.html#sqlalchemy.engine.Engine

MSNoise Documentation, Release 1.6

Parameters inifile (string) – The path to the db.ini file to use. Defaults
to os.cwd() + db.ini

Return type sqlalchemy.orm.session.Session

Returns A Session object, needed for many of the other API methods.

msnoise.api.create database inifile(tech, hostname, database, username, password,
prefix=”)

Creates the db.ini file based on supplied parameters.

Parameters

• tech (int) – The database technology used: 1=sqlite 2=mysql

• hostname (string) – The hostname of the server (if tech=2) or the
name of the sqlite file if tech=1)

• database (string) – The database name

• username (string) – The user name

• prefix (string) – The prefix to use for all tables

• password (string) – The password of user

Returns None

msnoise.api.read db inifile(inifile=None)
Reads the parameters from the db.ini file.

Parameters inifile (string) – The path to the db.ini file to use. Defaults
to os.cwd() + db.ini

Return type tuple

Returns tech, hostname, database, username, password

msnoise.api.get config(session, name=None, isbool=False, plugin=None)
Get the value of one or all config bits from the database.

Parameters

• session (sqlalchemy.orm.session.Session) – A Session object, as
obtained by connect() (page 66)

• name (str) – The name of the config bit to get. If omitted, a dictionnary
with all config items will be returned

• isbool (bool) – if True, returns True/False for config name. Defaults
to False

• plugin (str) – if provided, gives the name of the Plugin config to use.
E.g. if “Amazing” is provided, MSNoise will try to load the “Amaz-
ingConfig” entry point. See Extending MSNoise with Plugins (page 82)
for details.

Return type str, bool or dict

Returns the value for name or a dict of all config values

msnoise.api.update config(session, name, value, plugin=None)
Update one config bit in the database.

4.3. MSNoise API 67

https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.python.org/2.7/library/functions.html#int
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/stdtypes.html#dict

MSNoise Documentation, Release 1.6

Parameters

• session (sqlalchemy.orm.session.Session) – A Session object, as
obtained by connect() (page 66)

• name (str) – The name of the config bit to set.

• value (str) – The value of parameter name. Can also be NULL if you
don’t want to use this particular parameter.

• plugin (str) – if provided, gives the name of the Plugin config to use.
E.g. if “Amazing” is provided, MSNoise will try to load the “Amaz-
ingConfig” entry point. See Extending MSNoise with Plugins (page 82)
for details.

msnoise.api.get params(session)
Get config parameters from the database.

Parameters session (sqlalchemy.orm.session.Session) – A Session ob-
ject, as obtained by connect() (page 66)

Returns a Param class containing the parameters

msnoise.api.get filters(session, all=False)
Get Filters from the database.

Parameters

• session (sqlalchemy.orm.session.Session) – A Session object, as
obtained by connect() (page 66)

• all (bool) – Returns all filters from the database if True, or only filters
where used = 1 if False (default)

Return type list of Filter

Returns a list of Filter

msnoise.api.update filter(session, ref, low, mwcs low, high, mwcs high,
rms threshold, mwcs wlen, mwcs step, used)

Updates or Insert a new Filter in the database.

See also:

msnoise.msnoise table def.declare tables.Filter

Parameters

• session (sqlalchemy.orm.session.Session) – A Session object, as
obtained by connect() (page 66)

• ref (int) – The id of the Filter in the database

• low (float) – The lower frequency bound of the Whiten function (in
Hz)

• high (float) – The upper frequency bound of the Whiten function (in
Hz)

• rms threshold (float) – Not used anymore

• mwcs wlen (float) – Window length (in seconds) to perform MWCS

68 Chapter 4. Interacting with MSNoise

https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.python.org/2.7/library/functions.html#bool
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float

MSNoise Documentation, Release 1.6

• mwcs step (float) – Step (in seconds) of the windowing procedure in
MWCS

• used (bool) – Is the filter activated for the processing

msnoise.api.get networks(session, all=False)
Get Networks from the database.

Parameters

• session (sqlalchemy.orm.session.Session) – A Session object, as
obtained by connect() (page 66)

• all (bool) – Returns all networks from the database if True, or only
networks at least one station has used = 1 if False (default)

Return type list of str

Returns a list of network codes

msnoise.api.get stations(session, all=False, net=None)
Get Stations from the database.

Parameters

• session (sqlalchemy.orm.session.Session) – A Session object, as
obtained by connect() (page 66)

• all (bool) – Returns all stations from the database if True, or only
stations where used = 1 if False (default)

• net (str) – if set, limits the stations returned to this network

Return type list of msnoise.msnoise table def.declare tables.Station

Returns list of Station

msnoise.api.get station(session, net, sta)
Get one Station from the database.

Parameters

• session (sqlalchemy.orm.session.Session) – A Session object, as
obtained by connect() (page 66)

• net (str) – the network code

• sta (str) – the station code

Return type msnoise.msnoise table def.declare tables.Station

Returns a Station Object

msnoise.api.update station(session, net, sta, X, Y, altitude, coordinates=’UTM’, in-
strument=’N/A’, used=1)

Updates or Insert a new Station in the database.

See also:

msnoise.msnoise table def.declare tables.Station

Parameters

4.3. MSNoise API 69

https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#bool
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.python.org/2.7/library/functions.html#bool
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

MSNoise Documentation, Release 1.6

• session (sqlalchemy.orm.session.Session) – A Session object, as
obtained by connect() (page 66)

• net (str) – The network code of the Station

• sta (str) – The station code

• X (float) – The X coordinate of the station

• Y (float) – The Y coordinate of the station

• altitude (float) – The altitude of the station

• coordinates (str) – The coordinates system. “DEG” is WGS84 lati-
tude/ longitude in degrees. “UTM” is expressed in meters.

• instrument (str) – The instrument code, useful with PAZ correction

• used (bool) – Whether this station must be used in the computations.

msnoise.api.get station pairs(session, used=None, net=None)
Returns an iterator over all possible station pairs. If auto-correlation is configured in the
database, returns N*N pairs, otherwise returns N*(N-1)/2 pairs.

Parameters

• session (sqlalchemy.orm.session.Session) – A Session object, as
obtained by connect() (page 66)

• used (bool , int) – Select only stations marked used if False (default)
or all stations present in the database if True

• net (str) – Network code to filter for the pairs.

Return type iterable

Returns An iterable of Station object pairs

msnoise.api.get interstation distance(station1, station2, coordinates=’DEG’)
Returns the distance in km between station1 and station2.

Warning: Currently the stations coordinates system have to be the same!

Parameters

• station1 (Station) – A Station object

• station2 (Station) – A Station object

• coordinates (str) – The coordinates system. “DEG” is WGS84 lati-
tude/ longitude in degrees. “UTM” is expressed in meters.

Return type float

Returns The interstation distance in km

msnoise.api.update data availability(session, net, sta, comp, path, file, starttime,
endtime, data duration, gaps duration, sam-
plerate)

Updates a DataAvailability object in the database

70 Chapter 4. Interacting with MSNoise

https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#float

MSNoise Documentation, Release 1.6

Parameters

• session (sqlalchemy.orm.session.Session) – A Session object, as
obtained by connect() (page 66)

• net (str) – The network code of the Station

• sta (str) – The station code

• comp (str) – The component (channel)

• path (str) – The full path to the folder containing the file

• file (str) – The name of the file

• starttime (datetime.datetime) – Start time of the file

• endtime (datetime.datetime) – End time of the file

• data duration (float) – Cumulative duration of available data in the
file

• gaps duration (float) – Cumulative duration of gaps in the file

• samplerate (float) – Sample rate of the data in the file (in Hz)

msnoise.api.get new files(session)
Returns the files marked “N”ew or “M”odified in the database

Parameters session (sqlalchemy.orm.session.Session) – A Session ob-
ject, as obtained by connect() (page 66)

Return type list

Returns list of DataAvailability

msnoise.api.get data availability(session, net=None, sta=None, comp=None,
starttime=None, endtime=None)

Returns the DataAvailability objects for specific net, sta, starttime or endtime

Parameters

• session (sqlalchemy.orm.session.Session) – A Session object, as
obtained by connect() (page 66)

• net (str) – Network code

• sta (str) – Station code

• starttime (datetime.datetime , datetime.date) – Start time of
the search

• endtime (datetime.datetime , datetime.date) – End time of the
search

Return type list

Returns list of DataAvailability

msnoise.api.mark data availability(session, net, sta, flag)
Updates the flag of all DataAvailability objects matching net.sta in the database

Parameters

4.3. MSNoise API 71

https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/datetime.html#datetime.datetime
https://docs.python.org/2.7/library/datetime.html#datetime.datetime
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/datetime.html#datetime.datetime
https://docs.python.org/2.7/library/datetime.html#datetime.date
https://docs.python.org/2.7/library/datetime.html#datetime.datetime
https://docs.python.org/2.7/library/datetime.html#datetime.date

MSNoise Documentation, Release 1.6

• session (sqlalchemy.orm.session.Session) – A Session object, as
obtained by connect() (page 66)

• net (str) – Network code

• sta (str) – Station code

• flag (str) – Status of the DataAvailability object: New, Modified or
Archive. Values accepted are {‘N’, ‘M’, ‘A’}

msnoise.api.count data availability flags(session)
Count the number of DataAvailability, grouped by flag

Parameters session (sqlalchemy.orm.session.Session) – A Session ob-
ject, as obtained by connect() (page 66)

Return type list

Returns list of [count, flag] pairs

msnoise.api.update job(session, day, pair, jobtype, flag, commit=True, return-
job=True, ref=None)

Updates or Inserts a new Job in the database.

Parameters

• day (str) – The day in YYYY-MM-DD format

• pair (str) – the name of the pair (EXAMPLE?)

• jobtype (str) – CrossCorrelation (CC) or dt/t (DTT) Job?

• flag (str) – Status of the Job: “T”odo, “I”n Progress, “D”one.

• commit (bool) – Whether to directly commit (True, default) or not
(False)

• returnjob (bool) – Return the modified/inserted Job (True, default)
or not (False)

Return type Job or None

Returns If returnjob is True, returns the modified/inserted Job.

msnoise.api.massive insert job(jobs)
Routine to use a low level function to insert much faster a list of Job. This method uses
the Engine directly, no need to pass a Session object.

Parameters jobs (list) – a list of Job to insert.

msnoise.api.massive update job(session, jobs, flag=’D’)
Routine to use a low level function to update much faster a list of Job. This method uses
the Job.ref which is unique.

Parameters

• jobs (list) – a list of Job to update.

• flag (str) – The destination flag.

msnoise.api.is next job(session, flag=’T’, jobtype=’CC’)
Are there any Job in the database, with flag=‘flag‘ and jobtype=‘type‘

Parameters

72 Chapter 4. Interacting with MSNoise

https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str

MSNoise Documentation, Release 1.6

• session (sqlalchemy.orm.session.Session) – A Session object, as
obtained by connect() (page 66)

• jobtype (str) – CrossCorrelation (CC) or dt/t (DTT) Job?

• flag (str) – Status of the Job: “T”odo, “I”n Progress, “D”one.

Return type bool

Returns True if at least one Job matches, False otherwise.

msnoise.api.get next job(session, flag=’T’, jobtype=’CC’)
Get the next Job in the database, with flag=‘flag‘ and jobtype=‘jobtype‘. Jobs of the
same type are grouped per day. This function also sets the flag of all selected Jobs to “I”n
progress.

Parameters

• session (sqlalchemy.orm.session.Session) – A Session object, as
obtained by connect() (page 66)

• jobtype (str) – CrossCorrelation (CC) or dt/t (DTT) Job?

• flag (str) – Status of the Job: “T”odo, “I”n Progress, “D”one.

Return type list

Returns list of Job

msnoise.api.is dtt next job(session, flag=’T’, jobtype=’DTT’, ref=False)
Are there any DTT Job in the database, with flag=‘flag‘ and jobtype=‘jobtype‘. If ref is
provided, checks if a DTT “REF” job is present.

Parameters

• session (sqlalchemy.orm.session.Session) – A Session object, as
obtained by connect() (page 66)

• jobtype (str) – CrossCorrelation (CC) or dt/t (DTT) Job?

• flag (str) – Status of the Job: “T”odo, “I”n Progress, “D”one.

• ref (bool) – Whether to check for a REF job (True) or not (False,
default)

Return type bool

Returns True if at least one Job matches, False otherwise.

msnoise.api.get dtt next job(session, flag=’T’, jobtype=’DTT’)
Get the next DTT Job in the database, with flag=‘flag‘ and jobtype=‘jobtype‘. Jobs are
then grouped per station pair. This function also sets the flag of all selected Jobs to “I”n
progress.

Parameters

• session (sqlalchemy.orm.session.Session) – A Session object, as
obtained by connect() (page 66)

• jobtype (str) – CrossCorrelation (CC) or dt/t (DTT) Job?

• flag (str) – Status of the Job: “T”odo, “I”n Progress, “D”one.

Return type tuple

4.3. MSNoise API 73

https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

MSNoise Documentation, Release 1.6

Returns (pairs, days, refs): List of station pair names - Days of the next DTT
jobs - Job IDs (for later being able to update their flag).

msnoise.api.reset jobs(session, jobtype, alljobs=False, rule=None)
Sets the flag of all jobtype Jobs to “T”odo.

Parameters

• session (sqlalchemy.orm.session.Session) – A Session object, as
obtained by connect() (page 66)

• jobtype (str) – CrossCorrelation (CC) or dt/t (DTT) Job?

• alljobs (bool) – If True, resets all jobs. If False (default), only resets
jobs “I”n progress.

msnoise.api.reset dtt jobs(session, pair)
Sets the flag of all DTT Jobs of one pair to “T”odo.

Parameters

• session (sqlalchemy.orm.session.Session) – A Session object, as
obtained by connect() (page 66)

• pair (str) – The pair to update

msnoise.api.get job types(session, jobtype=’CC’)
Count the number of Jobs of a specific type, grouped by flag.

Parameters

• session (sqlalchemy.orm.session.Session) – A Session object, as
obtained by connect() (page 66)

• jobtype (str) – CrossCorrelation (CC) or dt/t (DTT) Job?

Return type list

Returns list of [count, flag] pairs

msnoise.api.get jobs by lastmod(session, jobtype=’CC’, last-
mod=datetime.datetime(2019, 9, 3, 16, 18, 56,
303960))

Parameters

• session (sqlalchemy.orm.session.Session) – A Session object, as
obtained by connect() (page 66)

• jobtype (str) – CrossCorrelation (CC) or dt/t (DTT) Job?

• lastmod (datetime.datetime) – Jobs’ modification time

Return type list

Returns list of Job objects.

msnoise.api.export allcorr(session, ccfid, data)

msnoise.api.export allcorr2(session, ccfid, data)

msnoise.api.add corr(session, station1, station2, filterid, date, time, duration, compo-
nents, CF, sampling rate, day=False, ncorr=0, params=None)

Adds a CCF to the data archive on disk.

74 Chapter 4. Interacting with MSNoise

https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.python.org/2.7/library/functions.html#str
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.python.org/2.7/library/functions.html#str
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/datetime.html#datetime.datetime

MSNoise Documentation, Release 1.6

Parameters

• session (sqlalchemy.orm.session.Session) – A Session object, as
obtained by connect() (page 66)

• station1 (str) – The name of station 1 (formatted NET.STA)

• station2 (str) – The name of station 2 (formatted NET.STA)

• filterid (int) – The ID (ref) of the filter

• date (datetime.date or str) – The date of the CCF

• time (datetime.time or str) – The time of the CCF

• duration (float) – The total duration of the exported CCF

• components (str) – The name of the components used (ZZ, ZR, . . .)

• sampling rate (float) – The sampling rate of the exported CCF

• day (bool) – Whether this function is called to export a daily stack
(True) or each CCF (when keep all parameter is set to True in the
configuration). Defaults to True.

• ncorr (int) – Number of CCF that have been stacked for this CCF.

• params (dict) – A dictionnary of MSNoise config parameters as re-
turned by get params() (page 68).

msnoise.api.export sac(db, filename, pair, components, filterid, corr, ncorr=0,
sac format=None, maxlag=None, cc sampling rate=None,
params=None)

msnoise.api.export mseed(db, filename, pair, components, filterid, corr, ncorr=0,
maxlag=None, cc sampling rate=None, params=None)

msnoise.api.stack(data, stack method=’linear’, pws timegate=10.0, pws power=2,
goal sampling rate=20.0)

Parameters

• data (numpy.ndarray) – the data to stack, each row being one CCF

• stack method (str) – either linear: average of all CCF or pws to
compute the phase weigthed stack. If pws is selected, the function
expects the pws timegate and pws power.

• pws timegate (float) – PWS time gate in seconds. Width of the
smoothing window to convolve with the PWS spectrum.

• pws power (float) – Power of the PWS weights to be applied to the
CCF stack.

• goal sampling rate (float) – Sampling rate of the CCF array sub-
mitted

Return type numpy.array

Returns the stacked CCF.

msnoise.api.get results(session, station1, station2, filterid, components, dates,
mov stack=1, format=’stack’, params=None)

Parameters

4.3. MSNoise API 75

https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/datetime.html#datetime.date
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/datetime.html#datetime.time
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float

MSNoise Documentation, Release 1.6

• session (sqlalchemy.orm.session.Session) – A Session object, as
obtained by connect() (page 66)

• station1 (str) – The name of station 1 (formatted NET STA)

• station2 (str) – The name of station 2 (formatted NET STA)

• filterid (int) – The ID (ref) of the filter

• components (str) – The name of the components used (ZZ, ZR, . . .)

• dates (list) – List of TODO datetime.datetime

• mov stack (int) – Moving window stack.

• format (str) – Either stack: the data will be stacked according to the
parameters passed with params or matrix: to get a 2D array of CCF.

• params (dict) – A dictionnary of MSNoise config parameters as re-
turned by get params() (page 68).

Return type numpy.ndarray

Returns Either a 1D CCF (if format is stack or a 2D array (if format=
matrix).

msnoise.api.get results all(session, station1, station2, filterid, components, dates)

Parameters

• session (sqlalchemy.orm.session.Session) – A Session object, as
obtained by connect() (page 66)

• station1 (str) – The name of station 1 (formatted NET STA)

• station2 (str) – The name of station 2 (formatted NET STA)

• filterid (int) – The ID (ref) of the filter

• components (str) – The name of the components used (ZZ, ZR, . . .)

• dates (list) – List of TODO datetime.datetime

Return type pandas.DataFrame

Returns All CCF results in a pandas.DataFrame, where the index is the time
of the CCF and the columns are the times in the coda.

msnoise.api.get maxlag samples(session)
Returns the length of the CC functions. Gets the maxlag and sampling rate from the
database.

Parameters session (sqlalchemy.orm.session.Session) – A Session ob-
ject, as obtained by connect() (page 66)

Return type int

Returns the length of the CCF in samples

msnoise.api.get t axis(session)
Returns the time axis (in seconds) of the CC functions. Gets the maxlag from the database
and uses get maxlag samples function.

76 Chapter 4. Interacting with MSNoise

https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.python.org/2.7/library/functions.html#int

MSNoise Documentation, Release 1.6

Parameters session (sqlalchemy.orm.session.Session) – A Session ob-
ject, as obtained by connect() (page 66)

Return type numpy.array

Returns the time axis in seconds

msnoise.api.get components to compute(session, plugin=None)
Returns the components configured in the database.

Parameters session (sqlalchemy.orm.session.Session) – A Session ob-
ject, as obtained by connect() (page 66)

Return type list of str

Returns a list of components to compute

msnoise.api.get components to compute single station(session, plugin=None)
Returns the components configured in the database.

Parameters session (sqlalchemy.orm.session.Session) – A Session ob-
ject, as obtained by connect() (page 66)

Return type list of str

Returns a list of components to compute

msnoise.api.build ref datelist(session)
Creates a date array for the REF. The returned tuple contains a start and an end date,
and a list of individual dates between the two.

Parameters session (sqlalchemy.orm.session.Session) – A Session ob-
ject, as obtained by connect() (page 66)

Return type tuple

Returns (start, end, datelist)

msnoise.api.build movstack datelist(session)
Creates a date array for the analyse period. The returned tuple contains a start and an
end date, and a list of individual dates between the two.

Parameters session (sqlalchemy.orm.session.Session) – A Session ob-
ject, as obtained by connect() (page 66)

Return type tuple

Returns (start, end, datelist)

msnoise.api.updated days for dates(session, date1, date2, pair, jobtype=’CC’,
interval=datetime.timedelta(days=1), return-
days=False)

Determines if any Job of jobtype=‘jobtype‘ and for pair=‘pair‘, concerning a date between
date1 and date2 has been modified in the last interval=‘interval‘.

Parameters

• session (sqlalchemy.orm.session.Session) – A Session object, as
obtained by connect() (page 66)

• date1 (datetime.datetime) – Beginning of the period of interest

• date2 (datetime.datetime) – End of the period of interest

4.3. MSNoise API 77

https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.python.org/2.7/library/datetime.html#datetime.datetime
https://docs.python.org/2.7/library/datetime.html#datetime.datetime

MSNoise Documentation, Release 1.6

• pair (str) – Pair of interest

• jobtype (str) – CrossCorrelation (CC) or dt/t (DTT) Job?

• interval (datetime.timedelta) – Interval of time before now to
search for updated days

• returndays (bool) – Whether to return a list of days (True) or not
(False, default)

Return type list or bool

Returns List of days if returndays is True, only “True” if not. (not clear!)

msnoise.api.azimuth(coordinates, x0, y0, x1, y1)
Returns the azimuth between two coordinate sets.

Parameters

• coordinates (str) – {‘DEG’, ‘UTM’, ‘MIX’}

• x0 (float) – X coordinate of station 1

• y0 (float) – Y coordinate of station 1

• x1 (float) – X coordinate of station 2

• y1 (float) – Y coordinate of station 2

Return type float

Returns The azimuth in degrees

msnoise.api.nextpow2(x)
Returns the next power of 2 of x.

Parameters x (int) – any value

Return type int

Returns the next power of 2 of x

msnoise.api.check and phase shift(trace, taper length=20.0)

msnoise.api.getGaps(stream, min gap=None, max gap=None)

msnoise.api.make same length(st)
This function takes a stream of equal sampling rate and makes sure that all channels have
the same length and the same gaps.

msnoise.api.clean scipy cache()

This functions wraps all destroy scipy cache at once. It is a workaround to the memory
leak induced by the “caching” functions in scipy fft.

msnoise.api.preload instrument responses(session)
This function preloads all instrument responses from response format and stores the
seed ids, start and end dates, and paz for every channel in a DataFrame.

Warning: This function only works for response format being “inventory” or “data-
less”.

78 Chapter 4. Interacting with MSNoise

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/datetime.html#datetime.timedelta
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int

MSNoise Documentation, Release 1.6

Parameters session (sqlalchemy.orm.session.Session) – A Session ob-
ject, as obtained by connect() (page 66)

Return type pandas.DataFrame

Returns A table containing all channels with the time of operation and poles
and zeros.

4.4 Core Functions

msnoise.move2obspy.myCorr(data, maxlag, plot=False, nfft=None)
This function takes ndimensional data array, computes the cross-correlation in the fre-
quency domain and returns the cross-correlation function between [-maxlag :maxlag].

Parameters

• data (numpy.ndarray) – This array contains the fft of each timeseries
to be cross-correlated.

• maxlag (int) – This number defines the number of samples
(N=2*maxlag + 1) of the CCF that will be returned.

Return type numpy.ndarray

Returns The cross-correlation function between [-maxlag:maxlag]

msnoise.move2obspy.myCorr2(data, maxlag, energy, index, plot=False, nfft=None, nor-
malized=False)

This function takes ndimensional data array, computes the cross-correlation in the fre-
quency domain and returns the cross-correlation function between [-maxlag :maxlag].

Parameters

• data (numpy.ndarray) – This array contains the fft of each timeseries
to be cross-correlated.

• maxlag (int) – This number defines the number of samples
(N=2*maxlag + 1) of the CCF that will be returned.

Return type numpy.ndarray

Returns The cross-correlation function between [-maxlag:maxlag]

msnoise.move2obspy.pcc xcorr(data, maxlag, energy, index, plot=False, nfft=None,
normalized=False)

Parameters

• data –

• maxlag –

• energy –

• index –

• plot –

• nfft –

• normalized –

4.4. Core Functions 79

https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://docs.sqlalchemy.org/en/13/orm/session_api.html#sqlalchemy.orm.session.Session
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/2.7/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/2.7/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

MSNoise Documentation, Release 1.6

Returns

msnoise.move2obspy.whiten(data, Nfft, delta, freqmin, freqmax, plot=False)
This function takes 1-dimensional data timeseries array, goes to frequency domain using
fft, whitens the amplitude of the spectrum in frequency domain between freqmin and
freqmax and returns the whitened fft.

Parameters

• data (numpy.ndarray) – Contains the 1D time series to whiten

• Nfft (int) – The number of points to compute the FFT

• delta (float) – The sampling frequency of the data

• freqmin (float) – The lower frequency bound

• freqmax (float) – The upper frequency bound

• plot (bool) – Whether to show a raw plot of the action (default: False)

Return type numpy.ndarray

Returns The FFT of the input trace, whitened between the frequency bounds

msnoise.move2obspy.whiten2(fft, Nfft, low, high, porte1, porte2, psds, whiten type)
This function takes 1-dimensional data timeseries array, goes to frequency domain using
fft, whitens the amplitude of the spectrum in frequency domain between freqmin and
freqmax and returns the whitened fft.

Parameters

• data (numpy.ndarray) – Contains the 1D time series to whiten

• Nfft (int) – The number of points to compute the FFT

• delta (float) – The sampling frequency of the data

• freqmin (float) – The lower frequency bound

• freqmax (float) – The upper frequency bound

• plot (bool) – Whether to show a raw plot of the action (default: False)

Return type numpy.ndarray

Returns The FFT of the input trace, whitened between the frequency bounds

msnoise.move2obspy.smooth(x, window=’boxcar’, half win=3)
some window smoothing

msnoise.move2obspy.getCoherence(dcs, ds1, ds2)

msnoise.move2obspy.mwcs(current, reference, freqmin, freqmax, df, tmin, window length,
step, smoothing half win=5)

The current time series is compared to the reference. Both time series are sliced in several
overlapping windows. Each slice is mean-adjusted and cosine-tapered (85% taper) before
being Fourier- transformed to the frequency domain. 𝐹𝑐𝑢𝑟(𝜈) and 𝐹𝑟𝑒𝑓 (𝜈) are the first
halves of the Hermitian symmetric Fourier-transformed segments. The cross-spectrum
𝑋(𝜈) is defined as 𝑋(𝜈) = 𝐹𝑟𝑒𝑓 (𝜈)𝐹 *

𝑐𝑢𝑟(𝜈)

80 Chapter 4. Interacting with MSNoise

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

MSNoise Documentation, Release 1.6

in which * denotes the complex conjugation. 𝑋(𝜈) is then smoothed by convolution with
a Hanning window. The similarity of the two time-series is assessed using the cross-
coherency between energy densities in the frequency domain:

𝐶(𝜈) = |𝑋(𝜈))|√︁
|𝐹𝑟𝑒𝑓 (𝜈)|2|𝐹𝑐𝑢𝑟(𝜈)|2

in which the over-line here represents the smoothing of the energy spectra for 𝐹𝑟𝑒𝑓 and
𝐹𝑐𝑢𝑟 and of the spectrum of 𝑋. The mean coherence for the segment is defined as the
mean of 𝐶(𝜈) in the frequency range of interest. The time-delay between the two cross
correlations is found in the unwrapped phase, 𝜑(𝑢), of the cross spectrum and is linearly
proportional to frequency:

𝜑𝑗 = 𝑚.𝑢𝑗 ,𝑚 = 2𝜋𝛿𝑡

The time shift for each window between two signals is the slope 𝑚 of a weighted lin-
ear regression of the samples within the frequency band of interest. The weights are
those introduced by [Clarke2011], which incorporate both the cross-spectral amplitude
and cross-coherence, unlike [Poupinet1984]. The errors are estimated using the weights
(thus the coherence) and the squared misfit to the modelled slope:

𝑒𝑚 =
√︁∑︀

𝑗 (
𝑤𝑗𝜈𝑗∑︀
𝑖 𝑤𝑖𝜈2𝑖

)2𝜎2
𝜑

where 𝑤 are weights, 𝜈 are cross-coherences and 𝜎2
𝜑 is the squared misfit of the data to

the modelled slope and is calculated as 𝜎2
𝜑 =

∑︀
𝑗(𝜑𝑗−𝑚𝜈𝑗)

2

𝑁−1

The output of this process is a table containing, for each moving window: the central time
lag, the measured delay, its error and the mean coherence of the segment.

Warning: The time series will not be filtered before computing the cross-spectrum!
They should be band-pass filtered around the freqmin-freqmax band of interest before-
hand.

Parameters

• current (numpy.ndarray) – The “Current” timeseries

• reference (numpy.ndarray) – The “Reference” timeseries

• freqmin (float) – The lower frequency bound to compute the dephas-
ing (in Hz)

• freqmax (float) – The higher frequency bound to compute the de-
phasing (in Hz)

• df (float) – The sampling rate of the input timeseries (in Hz)

• tmin (float) – The leftmost time lag (used to compute the “time lags
array”)

• window length (float) – The moving window length (in seconds)

• step (float) – The step to jump for the moving window (in seconds)

• smoothing half win (int) – If different from 0, defines the half length
of the smoothing hanning window.

Return type numpy.ndarray

4.4. Core Functions 81

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

MSNoise Documentation, Release 1.6

Returns [time axis,delta t,delta err,delta mcoh]. time axis contains the cen-
tral times of the windows. The three other columns contain dt, error and
mean coherence for each window.

4.5 Extending MSNoise with Plugins

New in version 1.4.

Starting with releasenotes/msnoise-1.4, MSNoise supports Plugins, this means the default work-
flow “from archive to dv/v” can be branched at any step!

• What is a Plugin and how to declare it in MSNoise (page 82)

• Plugin minimal structure (page 82)

• Declaring Job Types - Hooking (page 84)

• Plugin’s own config table (page 86)

• Adding Web Admin Pages (page 88)

• Uninstalling Plugins (page 89)

• Download Amazing Plugin (page 89)

4.5.1 What is a Plugin and how to declare it in MSNoise

A plugin is a python package, properly structured, that can be imported from msnoise, i.e. it
has to be “installed” like any other python package.

After installing a plugin, its package name must be declared in the plugins parameter in the
configuration. This must be done PER PROJECT. This configuration field supports a list of
plugins, separated by a simple comma (!no space), e.g. msnoise amazing,msnoise plugin101.

Once configured in a project, the plugin should appear when calling the msnoise plugin com-
mand:

$ msnoise plugin

Usage: msnoise-script.py plugin [OPTIONS] COMMAND [ARGS]...

Runs a command in a named plugin

Options:

--help Show this message and exit.

Commands:

amazing Example Amazing Plugin for MSNoise

4.5.2 Plugin minimal structure

A plugin is a python package, so its minimal structure is:

82 Chapter 4. Interacting with MSNoise

MSNoise Documentation, Release 1.6

msnoise-amazingplugin

__init__.py

setup.py

msnoise_amazingplugin

__init__.py

plugin_definition.py

The setup.py declares where the plugin actually hooks into MSNoise:

from setuptools import setup, find_packages

setup(

name='msnoise_amazing',
version='0.1a',
packages=find_packages(),

include_package_data=True,

install_requires=['msnoise',
'obspy'],

entry_points = {

'msnoise.plugins.commands': [

'amazing = msnoise_amazing.plugin_definition:amazing',
],

},

author = "Thomas Lecocq & MSNoise dev team",

author_email = "Thomas.Lecocq@seismology.be",

description = "An example plugin",

license = "EUPL-1.1",

url = "http://www.msnoise.org",

keywords="amazing seismology"

)

The most important line of this file is the one declaring the amazing entry point in msnoise.

plugins.commands and linking it to the plugin’s plugin definition.py file.

The content of plugin definition.py must then provide at least one click.Command, or more
commonly, one click.Group and many click.Command.

import click

@click.group()

def amazing():

"""Example Amazing Plugin for MSNoise"""

pass

@click.command()

def sayhi():

"""A Very Polite Command"""

print("Hi")

amazing.add_command(sayhi)

This way, once properly installed and activated (declared in the plugins config), the plugin
will be callable from msnoise:

$ msnoise plugin amazing

(continues on next page)

4.5. Extending MSNoise with Plugins 83

https://click.palletsprojects.com/en/5.x/api/#click.Command
https://click.palletsprojects.com/en/5.x/api/#click.Group
https://click.palletsprojects.com/en/5.x/api/#click.Command

MSNoise Documentation, Release 1.6

(continued from previous page)

Usage: msnoise-script.py plugin amazing [OPTIONS] COMMAND [ARGS]...

Example Amazing Plugin for MSNoise

Options:

--help Show this message and exit.

Commands:

sayhi A Very Polite Command

and its command too:

$ msnoise plugin amazing sayhi

Hi

Amazing, isn’t it ?

4.5.3 Declaring Job Types - Hooking

Plugin-based job types are defined by providing a register job types method in
plugin definition.py. A new job type is defined with two parameters:

• name: the actual job name (acronym style) used all over (example: CC2, TEST)

• after: when is this job added to the database.

Current supported “after” are:

• new files: will be created when running the new jobs command and will create a job
with those parameters (nf is a new file identified in the scan archive procedure). In this
specific case, the pair field of the job will only be NET.STA, not a “pair”. A job will
only be inserted if the station is “Used” in the configuration.

all_jobs.append({"day": current_date, "pair": "%s .%s "%(nf.net,nf.sta),

"jobtype": jobtype, "flag": "T",

"lastmod": datetime.datetime.utcnow()})

• scan archive: will be created when running the new jobs command, in parallel to CC

jobs. This is, for example, useful when one wants to compute relative amplitude ratios
between station pairs. In this case, the pair field of the job is set to the pair name.

• refstack: will be created when running the stack command and when a new REF stack
needed to be calculated. This is, for example, useful when one wants to work on the REF
stacks using a Ambient Seismic Noise Tomography code.

Plugin’s Job Types are first declared in setup.py (in Entry Points):

'msnoise.plugins.jobtypes': [

'register = msnoise_amazing.plugin_definition:register_job_types',
],

def register_job_types():

jobtypes = []

(continues on next page)

84 Chapter 4. Interacting with MSNoise

MSNoise Documentation, Release 1.6

(continued from previous page)

jobtypes.append({"name":"AMAZ1", "after":"new_files"})

return jobtypes

Then, adding a compute command to the plugin definition.py:

@click.command()

def compute():

"""Compute an Amazing Value"""

from .compute import main()

main()

amazing.add_command(compute)

and creating a compute.py file in the plugin folder:

import os

from obspy.core import UTCDateTime, read

from msnoise.api import connect, is_next_job, get_next_job, \

get_data_availability, get_config, update_job

def main():

db = connect()

while is_next_job(db, jobtype='AMAZ1'):
jobs = get_next_job(db, jobtype='AMAZ1')
for job in jobs:

net, sta = job.pair.split('.')
gd = UTCDateTime(job.day).datetime

print("Processing %s .%s for day %s "%(net,sta, job.day))

files = get_data_availability(

db, net=net, sta=sta, starttime=gd, endtime=gd,

comp="Z")

for file in files:

fn = os.path.join(file.path, file.file)

st = read(fn, starttime=UTCDateTime(job.day), endtime=UTCDateTime(job.

→˓day)+86400)

print(st)

Aaaand:

$ msnoise plugin amazing compute

Processing YA.UV05 for day 2010-09-01

1 Trace(s) in Stream:

YA.UV05.00.HHZ | 2010-09-01T00:00:00.000000Z - 2010-09-01T23:59:59.990000Z | 100.0 Hz,

→˓8640000 samples

Processing YA.UV06 for day 2010-09-01

1 Trace(s) in Stream:

YA.UV06.00.HHZ | 2010-09-01T00:00:00.000000Z - 2010-09-01T23:59:59.990000Z | 100.0 Hz,

→˓8640000 samples

Processing YA.UV10 for day 2010-09-01

1 Trace(s) in Stream:

YA.UV10.00.HHZ | 2010-09-01T00:00:00.000000Z - 2010-09-01T23:59:59.990000Z | 100.0 Hz,

→˓8640000 samples

Provided you have reset the DataAvailability rows with a “M” or “N” flag so that when you

4.5. Extending MSNoise with Plugins 85

MSNoise Documentation, Release 1.6

ran new jobs it actually inserted the AMAZ1 jobs !

Because job-based stuff always requires a lot of trial-and-error, remember that the msnoise

reset command is your best friend. In this example, we would need to msnoise reset AMAZ1

to reset “I”n Progress jobs, or msnoise reset AMAZ1 --all to reset all AMAZ1 jobs to “T”o
Do.

Note:

• Currently, not all MSNoise workflow steps use the is next job - get next job logic, but
it’ll be the case for MSNoise 1.5

• Only three hooks are currently present, of course, more will be added in in the future.

4.5.4 Plugin’s own config table

Plugins can create a new table in the database, e.g. in an install command. First, a
amazing table def.py table definition file must be created:

Table definitions for Amazing

from sqlalchemy import Column, String

from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class AmazingConfig(Base):

"""

Config Object

:type name: str

:param name: The name of the config bit to set.

:type value: str

:param value: The value of parameter `name`

"""

__tablename__ = "amazing-config"

name = Column(String(255), primary_key=True)

value = Column(String(255))

def __init__(self, name, value):

""""""

self.name = name

self.value = value

and a default.py file containing the parameters names, explanation and default value:

from collections import OrderedDict

default = OrderedDict()

default['parameter1'] = ["Some really useful text",'1']
default['parameter2'] = ["Some really useful text",'1']
default['parameter3'] = ["Some really useful text",'1']
default['parameter4'] = ["Some really useful text",'1']

(continues on next page)

86 Chapter 4. Interacting with MSNoise

MSNoise Documentation, Release 1.6

(continued from previous page)

default['question1'] = ["Is this a useful text [Y]/N",'Y']

Then, the install.py file contains the method to add this table to the database:

from msnoise.api import *

from .amazing_table_def import AmazingConfig

from .default import default

def main():

engine = get_engine()

Session = sessionmaker(bind=engine)

session = Session()

AmazingConfig.__table__.create(bind=engine, checkfirst=True)

for name in default.keys():

session.add(AmazingConfig(name=name,value=default[name][-1]))

session.commit()

then add the command to the plugin definition.py:

@click.command()

def install():

""" Create the Config table"""

from .install import main

main()

amazing.add_command(install)

When all this is prepared, running the msnoise plugin amazing install command will con-
nect to the current database, create the amazing-config table and add the parameters names
and their default value.

An entry point to the setup.py file has to be defined in order to access Plugin’s config tables
via the msnoise api msnoise.api.get config() (page 67) method:

'msnoise.plugins.table_def': [

'AmazingConfig = msnoise_amazing.amazing_table_def:AmazingConfig',
],

Then, running a simple python command:

from msnoise.api import connect, get_config

db = connect()

print(get_config(db, "parameter1", plugin="Amazing"))

print(get_config(db, "parameter2", plugin="Amazing"))

print(get_config(db, "parameter3", plugin="Amazing"))

print(get_config(db, "parameter4", plugin="Amazing"))

print(get_config(db, "question1", plugin="Amazing", isbool=True))

should print:

4.5. Extending MSNoise with Plugins 87

MSNoise Documentation, Release 1.6

1

1

1

1

True

4.5.5 Adding Web Admin Pages

Plugins can also declare new pages to the Web Admin ! This is simply done by, againg, declaring
some entry points in setup.py:

'msnoise.plugins.admin_view': [

'AmazingConfigView = msnoise_amazing.plugin_definition:AmazingConfigView',
],

and the corresponding object in plugin definition.py:

from flask.ext.admin.contrib.sqla import ModelView

from .amazing_table_def import AmazingConfig

class AmazingConfigView(ModelView):

Disable model creation

view_title = "MSNoise Amazing Configuration"

name = "Configuration"

can_create = False

can_delete = False

page_size = 50

Override displayed fields

column_list = ('name', 'value')

def __init__(self, session, **kwargs):

You can pass name and other parameters if you want to

super(AmazingConfigView, self).__init__(AmazingConfig, session,

endpoint="amazingconfig",

name="Config",

category="Amazing", **kwargs)

Then (as always, after re-developing/installing the package), the magic occurs:

88 Chapter 4. Interacting with MSNoise

MSNoise Documentation, Release 1.6

Or, changing the last 4 lines of the previous code to:

super(AmazingConfigView, self).__init__(AmazingConfig, session,

endpoint="amazingconfig",

name="Amazing Config",

category="Configuration", **kwargs)

4.5.6 Uninstalling Plugins

Plugins can be de-activated by removing their package name from the plugins configuration
parameter. Ideally, plugins should provide an uninstall command similar to the install to
take care of deleting/dropping the tables in the project database.

4.5.7 Download Amazing Plugin

That’s cheating, you know ? :-)

Download the Amazing Plugin

4.5. Extending MSNoise with Plugins 89

https://github.com/ROBelgium/msnoise-amazing

MSNoise Documentation, Release 1.6

4.6 Help on the msnoise commands

This page shows all the command line interface commands

4.6.1 msnoise admin

msnoise admin --help

Usage: [OPTIONS]

Starts the Web Admin on http://localhost:5000 by default

Options:

-p, --port INTEGER Port to open

--help Show this message and exit.

4.6.2 msnoise bugreport

msnoise bugreport --help

Usage: [OPTIONS]

This command launches the Bug Report script.

Options:

-s, --sys System Info

-m, --modules Modules Info

-e, --env Environment Info

-a, --all All Info

--help Show this message and exit.

4.6.3 msnoise compute cc

msnoise compute_cc --help

Usage: [OPTIONS]

Computes the CC jobs (based on the "New Jobs" identified)

Options:

--help Show this message and exit.

4.6.4 msnoise compute cc rot

msnoise compute_cc_rot --help

Usage: [OPTIONS]

Computes the CC jobs (based on the "New Jobs" identified)

(continues on next page)

90 Chapter 4. Interacting with MSNoise

MSNoise Documentation, Release 1.6

(continued from previous page)

Options:

--help Show this message and exit.

4.6.5 msnoise compute dtt

msnoise compute_dtt --help

Usage: [OPTIONS]

Computes the dt/t jobs based on the new MWCS data

Options:

-i, --interval FLOAT Number of days before now to search for modified Jobs

--help Show this message and exit.

4.6.6 msnoise compute mwcs

msnoise compute_mwcs --help

Usage: [OPTIONS]

Computes the MWCS jobs

Options:

--help Show this message and exit.

4.6.7 msnoise compute stretching

msnoise compute_stretching --help

Usage: [OPTIONS]

[experimental] Computes the stretching based on the new stacked data

Options:

--help Show this message and exit.

4.6.8 msnoise config

msnoise config get

msnoise config get --help

Usage: [OPTIONS] [NAMES]...

(continues on next page)

4.6. Help on the msnoise commands 91

MSNoise Documentation, Release 1.6

(continued from previous page)

Display the value of the given configuration variable(s).

Options:

--help Show this message and exit.

msnoise config gui

msnoise config gui --help

Usage: [OPTIONS]

Run the deprecated configuration GUI tool. Please use the configuration

web interface using 'msnoise admin' instead.

Options:

--help Show this message and exit.

msnoise config set

msnoise config set --help

Usage: [OPTIONS] NAME_VALUE

Set a configuration value. The argument should be of the form

'variable=value'.

Options:

--help Show this message and exit.

msnoise config sync

msnoise config sync --help

Usage: [OPTIONS]

Synchronise station metadata from inventory/dataless.

Options:

--help Show this message and exit.

4.6.9 msnoise db

msnoise db clean duplicates

92 Chapter 4. Interacting with MSNoise

MSNoise Documentation, Release 1.6

msnoise db clean_duplicates --help

Usage: [OPTIONS]

Checks the Jobs table and deletes duplicate entries

Options:

--help Show this message and exit.

msnoise db dump

msnoise db dump --help

Usage: [OPTIONS]

Dumps the complete database in a formatted structure.

Options:

--format TEXT

--help Show this message and exit.

msnoise db execute

msnoise db execute --help

Usage: [OPTIONS] SQL_COMMAND

EXPERT MODE: Executes 'sql_command' on the database. Use this command at

your own risk!!

Options:

--help Show this message and exit.

msnoise db import

msnoise db import --help

Usage: [OPTIONS] TABLE

Imports msnoise tables from formatted files (csv).

Options:

--format TEXT

--force

--help Show this message and exit.

msnoise db init

4.6. Help on the msnoise commands 93

MSNoise Documentation, Release 1.6

msnoise db init --help

Usage: [OPTIONS]

This command initializes the current folder to be a MSNoise Project by

creating a database and a db.ini file.

Options:

--tech TEXT Database technology: 1=SQLite 2=MySQL

--help Show this message and exit.

msnoise db upgrade

msnoise db upgrade --help

Usage: [OPTIONS]

Upgrade the database from previous to a new version.

This procedure adds new parameters with their default value in the config

database.

Options:

--help Show this message and exit.

4.6.10 msnoise info

msnoise info --help

Usage: [OPTIONS]

Outputs general information about the current install and config, plus

information about jobs and their status.

Options:

-j, --jobs Jobs Info only

--help Show this message and exit.

4.6.11 msnoise install

msnoise install --help

Usage: [OPTIONS]

DEPRECATED: since MSNoise 1.6, please use "msnoise db init" instead

Options:

--help Show this message and exit.

94 Chapter 4. Interacting with MSNoise

MSNoise Documentation, Release 1.6

4.6.12 msnoise jupyter

msnoise jupyter --help

Usage: [OPTIONS]

Launches an jupyter notebook in the current folder

Options:

--help Show this message and exit.

4.6.13 msnoise new jobs

msnoise new_jobs --help

Usage: [OPTIONS]

Determines if new CC jobs are to be defined

Options:

-i, --init First run ? This disables the check for existing jobs.

--nocc Disable the creation of CC jobs.

--hpc TEXT Format PREVIOUS:NEXT. When running on HPC, create the next jobs

in the workflow based on theprevious step mentioned here.

Example:"msnoise new_jobs --hpc CC:STACK" will create STACK jobs

based on CC jobs marked "D"one.

--help Show this message and exit.

4.6.14 msnoise p

Will be automatically populated with the commands declared by the plugins (p is an alias for
plugin)

4.6.15 msnoise plot

msnoise plot ccftime

msnoise plot ccftime --help

Usage: [OPTIONS] STA1 STA2 [EXTRA_ARGS]...

Plots the ccf vs time between sta1 and sta2

STA1 and STA2 must be provided with this format: NET.STA !

Options:

-f, --filterid INTEGER Filter ID

(continues on next page)

4.6. Help on the msnoise commands 95

MSNoise Documentation, Release 1.6

(continued from previous page)

-c, --comp TEXT Components (ZZ, ZR,...)

-m, --mov_stack INTEGER Mov Stack to read from disk

-a, --ampli FLOAT Amplification

-S, --seismic Seismic style

-s, --show BOOLEAN Show interactively?

-o, --outfile TEXT Output filename (?=auto)

-e, --envelope Plot envelope instead of time series

-r, --refilter TEXT Refilter CCFs before plotting (e.g. 4:8 for

filtering CCFs between 4.0 and 8.0 Hz. This will

update the plot title.

--normalize TEXT

--help Show this message and exit.

msnoise plot data availability

msnoise plot data_availability --help

Usage: [OPTIONS]

Plots the Data Availability vs time

Options:

-s, --show BOOLEAN Show interactively?

-o, --outfile TEXT Output filename (?=auto)

--help Show this message and exit.

msnoise plot distance

msnoise plot distance --help

Usage: [OPTIONS] [EXTRA_ARGS]...

Plots the REFs of all pairs vs distance

Options:

-f, --filterid INTEGER Filter ID

-c, --comp TEXT Components (ZZ, ZR,...)

-a, --ampli FLOAT Amplification

-s, --show BOOLEAN Show interactively?

-o, --outfile TEXT Output filename (?=auto)

-r, --refilter TEXT Refilter CCFs before plotting (e.g. 4:8 for

filtering CCFs between 4.0 and 8.0 Hz. This will

update the plot title.

--virtual-source TEXT Use only pairs including this station. Format must

be NET.STA

--help Show this message and exit.

msnoise plot dtt

96 Chapter 4. Interacting with MSNoise

MSNoise Documentation, Release 1.6

msnoise plot dtt --help

Usage: [OPTIONS] STA1 STA2 DAY

Plots a graph of dt against t

STA1 and STA2 must be provided with this format: NET.STA !

DAY must be provided in the ISO format: YYYY-MM-DD

Options:

-f, --filterid INTEGER Filter ID

-c, --comp TEXT Components (ZZ, ZR,...)

-m, --mov_stack INTEGER Mov Stack to read from disk

-s, --show BOOLEAN Show interactively?

-o, --outfile TEXT Output filename (?=auto)

--help Show this message and exit.

msnoise plot dvv

msnoise plot dvv --help

Usage: [OPTIONS]

Plots the dv/v (parses the dt/t results)

Individual pairs can be plotted extra using the -p flag one or more times.

Example: msnoise plot dvv -p ID_KWUI_ID_POSI

Example: msnoise plot dvv -p ID_KWUI_ID_POSI -p ID_KWUI_ID_TRWI

Remember to order stations alphabetically !

Options:

-f, --filterid INTEGER Filter ID

-c, --comp TEXT Components (ZZ, ZR,...)

-m, --mov_stack INTEGER Plot specific mov stacks

-p, --pair TEXT Plot a specific pair

-A, --all Show the ALL line?

-M, --dttname TEXT Plot M or M0?

-s, --show BOOLEAN Show interactively?

-o, --outfile TEXT Output filename (?=auto)

--help Show this message and exit.

msnoise plot interferogram

msnoise plot interferogram --help

Usage: [OPTIONS] STA1 STA2 [EXTRA_ARGS]...

Plots the interferogram between sta1 and sta2 (parses the CCFs)

(continues on next page)

4.6. Help on the msnoise commands 97

MSNoise Documentation, Release 1.6

(continued from previous page)

STA1 and STA2 must be provided with this format: NET.STA !

Options:

-f, --filterid INTEGER Filter ID

-c, --comp TEXT Components (ZZ, ZR,...)

-m, --mov_stack INTEGER Mov Stack to read from disk

-s, --show BOOLEAN Show interactively?

-o, --outfile TEXT Output filename (?=auto)

-r, --refilter TEXT Refilter CCFs before plotting (e.g. 4:8 for

filtering CCFs between 4.0 and 8.0 Hz. This will

update the plot title.

--help Show this message and exit.

msnoise plot mwcs

msnoise plot mwcs --help

Usage: [OPTIONS] STA1 STA2

Plots the mwcs results between sta1 and sta2 (parses the CCFs)

STA1 and STA2 must be provided with this format: NET.STA !

Options:

-f, --filterid INTEGER Filter ID

-c, --comp TEXT Components (ZZ, ZR,...)

-m, --mov_stack INTEGER Mov Stack to read from disk

-s, --show BOOLEAN Show interactively?

-o, --outfile TEXT Output filename (?=auto)

--help Show this message and exit.

msnoise plot spectime

msnoise plot spectime --help

Usage: [OPTIONS] STA1 STA2 [EXTRA_ARGS]...

Plots the ccf's spectrum vs time between sta1 and sta2

STA1 and STA2 must be provided with this format: NET.STA !

Options:

-f, --filterid INTEGER Filter ID

-c, --comp TEXT Components (ZZ, ZR,...)

-m, --mov_stack INTEGER Mov Stack to read from disk

-a, --ampli FLOAT Amplification

-s, --show BOOLEAN Show interactively?

-o, --outfile TEXT Output filename (?=auto)

-r, --refilter TEXT Refilter CCFs before plotting (e.g. 4:8 for

filtering CCFs between 4.0 and 8.0 Hz. This will

update the plot title.

--help Show this message and exit.

98 Chapter 4. Interacting with MSNoise

MSNoise Documentation, Release 1.6

msnoise plot station map

msnoise plot station_map --help

Usage: [OPTIONS]

Plots the station map (very very basic)

Options:

-s, --show BOOLEAN Show interactively?

-o, --outfile TEXT Output filename (?=auto)

--help Show this message and exit.

msnoise plot timing

msnoise plot timing --help

Usage: [OPTIONS]

Plots the timing (parses the dt/t results)

Individual pairs can be plotted extra using the -p flag one or more times.

Example: msnoise plot timing -p ID_KWUI_ID_POSI

Example: msnoise plot timing -p ID_KWUI_ID_POSI -p ID_KWUI_ID_TRWI

Remember to order stations alphabetically !

Options:

-f, --filterid INTEGER Filter ID

-c, --comp TEXT Components (ZZ, ZR,...)

-m, --mov_stack INTEGER Plot specific mov stacks

-p, --pair TEXT Plot a specific pair

-A, --all Show the ALL line?

-M, --dttname TEXT Plot M or M0?

-s, --show BOOLEAN Show interactively?

-o, --outfile TEXT Output filename (?=auto)

--help Show this message and exit.

4.6.16 msnoise plugin

Will be automatically populated with the commands declared by the plugins (p is an alias for
plugin)

4.6.17 msnoise populate

msnoise populate --help

Usage: [OPTIONS]

(continues on next page)

4.6. Help on the msnoise commands 99

MSNoise Documentation, Release 1.6

(continued from previous page)

Rapidly scan the archive filenames and find Network/Stations

Options:

--fromDA Populates the station table using network and station codes found

in the data_availability table, overrides the default workflow

step.

--help Show this message and exit.

4.6.18 msnoise reset

msnoise reset --help

Usage: [OPTIONS] JOBTYPE

Resets the job to "T"odo. JOBTYPE is the acronym of the job type. By

default only resets jobs "I"n progress. --all resets all jobs, whatever

the flag value. Standard Job Types are CC, STACK, MWCS and DTT, but

plugins can define their own.

Options:

-a, --all Reset all jobs

-r, --rule TEXT Reset job that match this SQL rule

--help Show this message and exit.

4.6.19 msnoise scan archive

msnoise scan_archive --help

Usage: [OPTIONS]

Scan the archive and insert into the Data Availability table.

Options:

-i, --init First run ?

--path TEXT Scan all files in specific folder, overrides the default

workflow step.

-r, --recursively When scanning a path, walk subfolders automatically ?

--crondays TEXT Number of past days to monitor, typically used in cron

jobs (overrides the 'crondays' configuration value). Must

be a float representing a number of days, or designate

weeks, days, and/or hours using the format 'Xw Xd Xh'.
--help Show this message and exit.

4.6.20 msnoise stack

msnoise stack --help

Usage: [OPTIONS]

(continues on next page)

100 Chapter 4. Interacting with MSNoise

MSNoise Documentation, Release 1.6

(continued from previous page)

Stacks the [REF] or [MOV] windows. Computes the STACK jobs.

Options:

-r, --ref Compute the REF Stack

-m, --mov Compute the MOV Stacks

-s, --step Compute the STEP Stacks

--help Show this message and exit.

4.6.21 msnoise test

msnoise test --help

Usage: [OPTIONS]

Runs the test suite, should be executed in an empty folder!

Options:

-p, --prefix TEXT Prefix for tables

--help Show this message and exit.

4.6.22 msnoise upgrade-db

msnoise upgrade-db --help

Usage: [OPTIONS]

DEPRECATED: since MSNoise 1.6, please use "msnoise db upgrade" instead

Options:

--help Show this message and exit.

4.6. Help on the msnoise commands 101

MSNoise Documentation, Release 1.6

102 Chapter 4. Interacting with MSNoise

CHAPTER

FIVE

DEVELOPMENT & MISCELLANEOUS

5.1 Table Definitions

class msnoise.msnoise table def.Filter(**kwargs)
Filter base class.

Parameters

• ref (int) – The id of the Filter in the database

• low (float) – The lower frequency bound of the Whiten function (in
Hz)

• high (float) – The upper frequency bound of the Whiten function (in
Hz)

• mwcs low (float) – The lower frequency bound of the linear regression
done in MWCS (in Hz)

• mwcs high (float) – The upper frequency bound of the linear regres-
sion done in MWCS (in Hz)

• rms threshold (float) – Not used anymore

• mwcs wlen (float) – Window length (in seconds) to perform MWCS

• mwcs step (float) – Step (in seconds) of the windowing procedure in
MWCS

• used (bool) – Is the filter activated for the processing

Attributes

high

low

mwcs high

mwcs low

mwcs step

mwcs wlen

ref

rms threshold

used

103

https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#bool

MSNoise Documentation, Release 1.6

class msnoise.msnoise table def.Job(day, pair, jobtype, flag, last-
mod=datetime.datetime(2019, 9, 3, 14,
18, 56, 296951))

Job Object

Parameters

• ref (int) – The Job ID in the database

• day (str) – The day in YYYY-MM-DD format

• pair (str) – the name of the pair (EXAMPLE?)

• jobtype (str) – CrossCorrelation (CC) or dt/t (DTT) Job?

• flag (str) – Status of the Job: “T”odo, “I”n Progress, “D”one.

Attributes

day

flag

jobtype

lastmod

pair

ref

class msnoise.msnoise table def.Station(*args)
Station Object

Parameters

• ref (int) – The Station ID in the database

• net (str) – The network code of the Station

• sta (str) – The station code

• X (float) – The X coordinate of the station

• Y (float) – The Y coordinate of the station

• altitude (float) – The altitude of the station

• coordinates (str) – The coordinates system. “DEG” is WGS84 lati-
tude/ longitude in degrees. “UTM” is expressed in meters.

• instrument (str) – The instrument code, useful with PAZ correction

• used (bool) – Whether this station must be used in the computations.

Attributes

X

Y

altitude

coordinates

instrument

104 Chapter 5. Development & Miscellaneous

https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool

MSNoise Documentation, Release 1.6

net

ref

sta

used

class msnoise.msnoise table def.Config(name, value)
Config Object

Parameters

• name (str) – The name of the config bit to set.

• value (str) – The value of parameter name

Attributes

name

value

class msnoise.msnoise table def.DataAvailability(net, sta, comp, path, file, start-
time, endtime, data duration,
gaps duration, samplerate,
flag)

DataAvailability Object

Parameters

• ref (int) – The Station ID in the database

• net (str) – The network code of the Station

• sta (str) – The station code

• comp (str) – The component (channel)

• path (str) – The full path to the folder containing the file

• file (str) – The name of the file

• starttime (datetime) – Start time of the file

• endtime (datetime) – End time of the file

• data duation – Cumulative duration of available data in the file

• gaps duration (float) – Cumulative duration of gaps in the file

• samplerate (float) – Sample rate of the data in the file (in Hz)

• flag (str) – The status of the entry: “N”ew, “M”odified or “A”rchive

Attributes

comp

data duration

endtime

file

flag

5.1. Table Definitions 105

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#str

MSNoise Documentation, Release 1.6

gaps duration

net

path

ref

samplerate

sta

starttime

5.2 About Databases and Performances

To quote the SQLite website:

Appropriate Uses For SQLite

SQLite is different from most other SQL database engines in that its primary design
goal is to be simple:

• Simple to administer

• Simple to operate

• Simple to embed in a larger program

• Simple to maintain and customize

Many people like SQLite because it is small and fast. But those qualities are just
happy accidents. Users also find that SQLite is very reliable. Reliability is a con-
sequence of simplicity. With less complication, there is less to go wrong. So, yes,
SQLite is small, fast, and reliable, but first and foremost, SQLite strives to be simple.

Simplicity in a database engine can be either a strength or a weakness, depending on
what you are trying to do. In order to achieve simplicity, SQLite has had to sacrifice
other characteristics that some people find useful, such as high concurrency, fine-
grained access control, a rich set of built-in functions, stored procedures, esoteric
SQL language features, XML and/or Java extensions, tera- or peta-byte scalability,
and so forth. If you need some of these features and do not mind the added com-
plexity that they bring, then SQLite is probably not the database for you. SQLite
is not intended to be an enterprise database engine. It is not designed to compete
with Oracle or PostgreSQL.

The basic rule of thumb for when it is appropriate to use SQLite is this: Use SQLite
in situations where simplicity of administration, implementation, and maintenance
are more important than the countless complex features that enterprise database
engines provide. As it turns out, situations where simplicity is the better choice are
more common than many people realize.

Another way to look at SQLite is this: SQLite is not designed to replace Oracle. It
is designed to replace fopen().

To test MSNoise, one can work with a SQLite database. SQLite communication is supported
by default in Python (part of the standard library). The major drawback of SQLite is that it
doesn’t support high concurrency. In the case of MSNoise, this means that only one Thread (or

106 Chapter 5. Development & Miscellaneous

MSNoise Documentation, Release 1.6

Process) can interact with the database “at a time”. For small batch tests or small runs, that is
OK, but when processing larger archives (years of data of 5+ stations), then the implementation
of a MySQL database will allow to process the jobs in parallel.

Note: I have been working on some sort of API server layer above a single SQLite database,
working as a Queuing system. The API server is the only client of the database, and exchanges
data with the code via json HTTP requests. Any help, idea, brainstorming on this is welcome!

5.3 References

5.4 Contributors

The following poeple have contributed to MSNoise (sorted alphabetically):

• Xavier Béguin

• Corentin Caudron

• Clare Donaldson

• Raphaël De Plaen

• Robert Green

• Damiam Kula

• Thomas Lecocq

• Aurélien Mordret

• Lukas E. Preiswerk

• Carmelo Sammarco

• Arnaud Watlet

5.5 Release Notes

The release notes are not converted to PDF, please read them online.

5.3. References 107

MSNoise Documentation, Release 1.6

108 Chapter 5. Development & Miscellaneous

BIBLIOGRAPHY

[Jones2001] • Jones, Eric, Travis Oliphant, Pearu Peterson, et others. 2001. SciPy: Open
source scientific tools for Python.

[Oliphant2006] • Oliphant, Travis E. 2006. Guide to NumPy. Provo, UT: Brigham Young
University.

[Beyreuther2010] • Beyreuther, Moritz, Robert Barsch, Lion Krischer, Tobias Megies, Yan-
nik Behr, et Joachim Wassermann. 2010. ObsPy: A Python Toolbox for Seis-
mology. Seismological Research Letters 81 (3)

[Megies2011] • Megies, Tobias, Moritz Beyreuther, Robert Barsch, Lion Krischer, et
Joachim Wassermann. 2011. ObsPy – What Can It Do for Data Centers and
Observatories?, Annals of Geophysics 54 (1)

[DeCastroLopo2013] • De Castro Lopo, Erik. 2013. Secret Rabbit Code (aka libsamplerate).

[Hunter2007] • Hunter, J.D. 2007. Matplotlib: A 2D Graphics Environment. Computing in
Science Engineering 9 (3)

[McKinney2012] • McKinney, Wes. 2012. Python for Data Analysis. O’Reilly Media.

[Clarke2011] • Clarke, D., Zaccarelli, L., Shapiro, N.M., Brenguier, F., 2011. Assessment of
resolution and accuracy of the Moving Window Cross Spectral technique for
monitoring crustal temporal variations using ambient seismic noise. Geophysi-
cal Journal International 186, 867–882. https://doi.org/10.1111/j.1365-246X.
2011.05074.x

[Poupinet1984] • Poupinet, G., Ellsworth, W.L., Frechet, J., 1984. Monitoring Velocity Vari-
ations in the Crust Using Earthquake Doublets: An Application to the Calav-
eras Fault, California. Journal of Geophysical Research 89, 5719–5731.

109

https://doi.org/10.1111/j.1365-246X.2011.05074.x
https://doi.org/10.1111/j.1365-246X.2011.05074.x

	Installation
	Installation
	Full Installation
	MySQL Server and Workbench
	MySQL/MariaDB configuration
	Database Structure - Tables
	Building this documentation
	Using the development version

	Workflow
	Workflow
	Initialize Project
	MSNoise Admin (Web Interface)
	Populate Station Table
	Scan Archive
	New Jobs
	Compute Cross-Correlations
	Stack
	Compute MWCS
	Compute dt/t

	Plotting
	Plotting
	Customizing Plots
	Data Availability Plot
	Station Map
	Interferogram Plot
	CCF vs Time
	CCF’s spectrum vs Time
	MWCS Plot
	Distance Plot
	dv/v Plot
	dt/t Plot

	Interacting with MSNoise
	How To’s
	Run the simplest MSNoise run ever
	Run MSNoise using lots of cores on a HPC
	Reprocess data
	Define one’s own data structure of the waveform archive
	How to have MSNoise work with 2+ data structures at the same time
	How to duplicate/dump the MSNoise configuration
	Testing the Dependencies

	Interaction Examples & Gallery
	Plot a Reference CCF
	Plot an interferogram

	MSNoise API
	Core Functions
	Extending MSNoise with Plugins
	What is a Plugin and how to declare it in MSNoise
	Plugin minimal structure
	Declaring Job Types - Hooking
	Plugin’s own config table
	Adding Web Admin Pages
	Uninstalling Plugins
	Download Amazing Plugin

	Help on the msnoise commands
	msnoise admin
	msnoise bugreport
	msnoise compute_cc
	msnoise compute_cc_rot
	msnoise compute_dtt
	msnoise compute_mwcs
	msnoise compute_stretching
	msnoise config
	msnoise db
	msnoise info
	msnoise install
	msnoise jupyter
	msnoise new_jobs
	msnoise p
	msnoise plot
	msnoise plugin
	msnoise populate
	msnoise reset
	msnoise scan_archive
	msnoise stack
	msnoise test
	msnoise upgrade-db

	Development & Miscellaneous
	Table Definitions
	About Databases and Performances
	References
	Contributors
	Release Notes

	Bibliography

